首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical phase relations involving cordierite and garnet revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O
Authors:B J Hensen
Institution:(1) School of Applied Geology, University of New South Wales, Kensington, Australia
Abstract:The theoreticalP-T grid for stability relations of the phases cordierite (Cd), sapphirine (Sa), hypersthene (Hy), garnet (Ga), spinel (Sp), sillimanite (Si), and quartz (Qz) of Hensen (1971), has proved useful in the interpretation of metamorphic mineral assemblages formed at low oxygen fugacity. Both experimental data and evidence from natural rocks indicate that at high oxygen fugacity compatability relations change as a result of the enlargement of the stability field of spinel, which causes a topological inversion and the stabilisation of the invariant points Sa], Ga], and Cd]. This implies the stable existence of the univariant equilibria (for 
$$f_{{\text{O}}_{\text{2}} } $$
buffered conditions): Sp+Qz=Ga+Hy+Si+O2 (Sa, Cd), Cd+Sp+Qz=Hy+Si+O2 (Sa, Ga) and Sa+Sp+Qz=Hy+Si+O2 (Ga, Cd) and the divariant reaction: Sp+Qz=Hy+Si+O2 (Sa, Ga, Cd). These redox equilibria are restricted to conditions of high oxygen fugacity. The proposed theoreticalP-T grids, for both low and high oxygen fugacity, satisfactorily explain all experimental data and metamorphic mineral assemblages so far found in granulites.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号