首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A226Ra section across the East Pacific Rise
Authors:Y Chung
Institution:Isotope Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093 U.S.A.
Abstract:Four vertical Ra profiles have been measured across the East Pacific Rise (EPR) from Callao to Tahiti. These profiles show that Ra in the deep water (below 2 km depth) increases toward the EPR. However, this increase does not necessarily indicate a Ra source on the EPR. The increase from Tahiti toward the EPR reflects the general trend of the Pacific Ra distribution. The decrease from the EPR eastward to the Peru Basin is probably due to the continental effect with higher sedimentation rates.The hydrography, especially potential temperature and oxygen, indicates significant differences below about 3 km depth between the east and west flanks of the EPR indicating the effect of the cold bottom water to the west of the EPR. The benthic front is identified at 3.9 km depth at the westernmost station near Tahiti. Silicate and salinity data are by no means unique and reflect a complicated local circulation and mixing pattern with a minor intrusion of the Antarctic Bottom Water from the south into the Peru Basin.The θ-Ra and Ra-Si relationships both indicate an enrichment of Ra in the deep water below 2 km depth probably due to input from the underlying sediments. Above 2 km depth, Ra covaries almost linearly with θ as well as Si, mimicking a stable conservative property. This suggests that the radiodecay rate is nearly balanced by the input rate within the water column between 1 and 2 km depth in which θ is linearly correlated withS.Simple vertical model calculations show that the in-situ production of Ra by particulate dissolution in the deep water is negligible within a reasonable range of upwelling rates from 2 to 12 m/yr. Thus the Ra profiles show a net decay effect and so the θ-Ra relations are not linear in the deep water. In fact, the composite θ-Ra plots show a break at 25 dpm/100 kg (at 2 km depth) rather than a smooth curve, while theθ-S plots are essentially linear. A maximum Ra production rate of about 8 × 10?3 (dpm/100 kg) yr?1 is obtained from all the profiles with minimum upwelling rates between 0.7 and 3.5 m/yr.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号