首页 | 本学科首页   官方微博 | 高级检索  
     


Meteoroid ablation spheres from deep-sea sediments
Authors:M.B. Blanchard  D.E. Brownlee  T.E. Bunch  P.W. Hodge  F.T. Kyte
Affiliation:1. NASA Johnson Space Center, Houston, TX 77058 U.S.A.;2. California Institute of Technology, Pasadena, CA 91125 U.S.A.;3. NASA Ames Research Center, Moffett Field, CA 94035 U.S.A.;4. University of Washington, Seattle, WA 98195 U.S.A.;5. San Jose State University, San Jose, CA 95192 U.S.A.
Abstract:We present analyses of spheres magnetically extracted from mid-Pacific abyssal clays 0–500,000 years old. The concentration of spheres >200 μm is a few times 10 ppb. The spheres were divided into three groups using their dominant mineralogy, and are named iron, glassy, and silicate. Most spheres were formed from particles that completely melted as they separated from their parent meteoroids during the ablation process. However, some of the silicate spheres contain relict grains of the parent meteoroids that did not experience any melting. Typically, these relict grains are olivine crystals whose cores are Mg-rich (Fo89–99). Commonly the outer rims of these grains were altered during heating. Other relict mineral grains include enstatite, ferrous spinel, chromite, and pentlandite.The three groups of spheres may possibly indicate some genetic significance. It seems reasonable to expect iron-rich spheres to be produced during ablation of iron and metal-rich silicate meteoroids. Metal spheres are probably not produced by ablation of predominantly silicate meteoroids because studies of fusion crusts and laboratory ablated silicate materials have never yielded separate metal spheres, but rather have produced spheres with intergrown iron oxide and silicate phases. The iron spheres possess identical mineralogy with the fusion crusts of Boguslavka, Norfork, and N'Kandhla iron meteorites as well as with the ablation debris created in the laboratory using iron and nickel-iron samples.The glassy spheres are considerably more Fe-rich than the silicate spheres. They consist of magnetite and a Fe-rich glass which is relatively low in Si. Some of these spheres may have experienced pronounced volatile depletion during the ablation process and could have been derived from silicate or metal-rich silicate meteoroids.The silicate spheres are undoubtedly derived from ablation of stony meteoroids. Two of the mineral assemblages occurring in these spheres (olivine-magnetite-glass and sulfide) are identical to those described in the natural fusion crusts of Allende, Orgueil, and Murchison meteorites, laboratory-made ablation debris, and melted interplanetary dust collected from the stratosphere. Bulk compositions and relict grains are useful for determining the parent meteoroid types for the silicate spheres. Bulk analyses of spheres have non-volatile elemental abundances similar to chondritic abundances. Analyses of relict grains identified high-temperature minerals which often occur as larger crystals in a fine-grained matrix that is characterized by voids. These voids were caused by escaping volatiles as minerals decomposed during ablation. Because larger crystals of higher-temperature minerals are associated with fine-grained, low-temperature, volatile-rich matrix, the obvious candidates for parent meteoroids of the silicate spheres containing relict grains are carbonaceous chondrites.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号