首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习的SMAP卫星海表盐度反演
引用本文:柳青青,张亚姝,徐茗,李洪平,刘海行. 基于机器学习的SMAP卫星海表盐度反演[J]. 海洋科学进展, 2022, 40(1): 56-65
作者姓名:柳青青  张亚姝  徐茗  李洪平  刘海行
作者单位:中国海洋大学信息科学与工程学院;青岛大学商学院;自然资源部第一海洋研究所
基金项目:自然资源部全球变化与海气相互作用专项(二期)资助项目——海洋动力系统多尺度相互作用及其参数化评估;国家自然科学基金委员会-山东省人民政府联合基金项目——海量数据驱动下的高分辨率海洋数值模式关键算法研究(U1806205)。
摘    要:针对传统海表盐度的物理机制反演模型拟合过程复杂且反演精度不高等问题,借助大范围、全天时、L波段探测的SMAP卫星微波海洋遥感产品,以北太平洋(135°~165°E,15°~45°N)范围为研究海域,利用深层神经网络(Deep Neural Network, DNN)和支持向量机(Support Vector Machine, SVM)建立海表盐度(Sea Surface Salinity, SSS)遥感反演模型。验证结果表明:DNN与SVM模型测试集反演SSS与Argo(Array for Real-time Geostrophic Oceanography))实测SSS的均方根误差(Root Mean Square Error, RMSE)分别为0.179 0和0.257 0,平均绝对误差(Mean Absolute Error, MAE)为0.129 3和0.182 1,最小绝对误差为0.642 6和2.038 0,最大绝对误差为1.324 1和2.373 2,反演模型数据与实测Argo数据拟合后的的相关系数分别为0.89和0.84。总体来看,DNN模型比SVM模型的反演精度更高,...

关 键 词:海表盐度  SMAP卫星  深层神经网络  支持向量机  反演模型

SMAP Satellite Sea Surface Salinity Inversion Model Based on Machine Learning
LIU Qing-qing,ZHANG Ya-shu,Xu Ming,LI Hong-ping,LIU Hai-xing. SMAP Satellite Sea Surface Salinity Inversion Model Based on Machine Learning[J]. Advances in Marine Science, 2022, 40(1): 56-65
Authors:LIU Qing-qing  ZHANG Ya-shu  Xu Ming  LI Hong-ping  LIU Hai-xing
Affiliation:(School of Information Science and Engineering, Ocean University of China, Qingdao 266100, China;Business College, Qingdao University, Qingdao 266100, China;First Institute of Oceanography, MNR, Qingdao 266061, China)
Abstract:Sea surface salinity(SSS)is an import feature in the global ocean circulation and climate change.In order to solve the problem of complicated inversion process and poor accuracy of retrieved SSS,this paper uses the SMAP mission products of large-scale,all-day and L-band observation,takes(135°—165°E,15°—45°N)in the North Pacific as the research area,and establishes two SSS remote sensing models by Deep Neural Network(DNN)and Support Vector Machine(SVM).The experiment results show that the root mean square error of the DNN and the SVM model relative to Argo measured SSS are 0.1790 and 0.2570,respectively.The average absolute error are 0.1293 and 0.1821,respectively.The minimum absolute error are 0.6426 and 2.0380,and the maximum absolute error are 1.3241 and 2.3732,respectively.After fitting the inversion model data with the measured Argo data,the correlation coefficients are 0.89 and 0.84 respectively.In general,the inversion accuracy of DNN model is higher than that of SVM model,but both of them significantly improve the accuracy of SMOS salinity products,which can provide data support for relevant research.
Keywords:sea surface salinity  SMAP satellite  deep neural network  support vector machine  inversion model
本文献已被 维普 等数据库收录!
点击此处可从《海洋科学进展》浏览原始摘要信息
点击此处可从《海洋科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号