首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geological Observations of Damage Asymmetry in the Structure of the San Jacinto, San Andreas and Punchbowl Faults in Southern California: A Possible Indicator for Preferred Rupture Propagation Direction
Authors:Ory Dor  Thomas K Rockwell  Yehuda Ben-Zion
Institution:(1) Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, USA;(2) Department of Geological Sciences, San Diego State University, San Diego, CA 92182-1020, USA
Abstract:We present new in situ observations of systematic asymmetry in the pattern of damage expressed by fault zone rocks along sections of the San Andreas, San Jacinto, and Punchbowl faults in southern California. The observed structural asymmetry has consistent manifestations at a fault core scale of millimeters to meters, a fault zone scale of meters to tens of meters and related geomorphologic features. The observed asymmetric signals are in agreement with other geological and geophysical observations of structural asymmetry in a damage zone scale of tens to hundreds of meters. In all of those scales, more damage is found on the side of the fault with faster seismic velocities at seismogenic depths. The observed correlation between the damage asymmetry and local seismic velocity structure is compatible with theoretical predictions associated with preferred propagation direction of earthquake ruptures along faults that separate different crustal blocks. The data are consistent with a preferred northwestward propagation direction for ruptures on all three faults. If our results are supported by additional observations, asymmetry of structural properties determined in field studies can be utilized to infer preferred propagation direction of large earthquake ruptures along a given fault section. The property of a preferred rupture direction can explain anomalous behavior of historic rupture events, and may have profound implications for many aspects of earthquake physics on large faults.
Keywords:Earthquake physics  fault zone structure  rock damage  material interfaces  geologic mapping  dynamic rupture
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号