首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental constraints on ultrapotassic magmatism from the Bohemian Massif (durbachite series, Czech Republic)
Authors:Fleurice Parat  François Holtz  Milo? René  Renat Almeev
Institution:1. Institut für Geowissenschaften, Mineralogie-Geochemie, Universit?t Freiburg, Albertstra?e 23b, 79104, Freiburg, Germany
2. Institut für Mineralogie, Leibniz Universit?t Hannover, Callinstrasse 3, 30167, Hannover, Germany
3. Institute of Rock Structure and Mechanics, ASCR V, Hole?ovi?kách 41, 182 09, Prague, Czech Republic
Abstract:The equilibrium phase relations of a mafic durbachite (53 wt.% SiO2) from the Třebíč pluton, representative of the Variscan ultrapotassic magmatism of the Bohemian Massif (338–335 Ma), have been determined as a function of temperature (900–1,100°C), pressure (100–200 MPa), and H2O activity (1.1–6.1 wt.% H2O in the melt). Two oxygen fugacity ranges were investigated: close to the Ni–NiO (NNO) buffer and 2.6 log unit above NNO buffer (∆NNO + 2.6). At 1,100°C, olivine is the liquidus phase and co-crystallized with phlogopite and augite at 1,000°C for the whole range of investigated pressure and water content in the melt. At 900°C, the mineral assemblage consists of augite and phlogopite, whereas olivine is not stable. The stability field of both alkali feldspar and plagioclase is restricted to low pressure (100 MPa) at nearly water-saturated conditions (<3–4 wt.% H2O) and T < 900°C. A comparison between experimental products and natural minerals indicates that mafic durbachites have a near-liquidus assemblage of olivine, augite, Ti-rich phlogopite, apatite and zircon, followed by alkali feldspar and plagioclase, similar to the mineral assemblage of minette magma. Natural amphibole, diopside and orthopyroxene were not reproduced experimentally and probably result from sub-solidus reactions, whereas biotite re-equilibrated at low temperature. The crystallization sequence olivine followed by phlogopite and augite reproduces the sequence inferred in many mica-lamprophyre rocks. The similar fractionation trends observed for durbachites and minettes indicate that mafic durbachites are probably the plutonic equivalents of minettes and that K- and Mg-rich magmas in the Bohemian Massif may have been generated from partial melting of a phlogopite–clinopyroxene-bearing metasomatized peridotite. Experimental melt compositions also suggest that felsic durbachites can be generated by simple fractionation of a more mafic parent and mixing with mantle-derived components at mid crustal pressures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号