首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Relationships Between Long-Term Trend of Satellite-Derived Chlorophyll-<Emphasis Type="Italic">a</Emphasis> and Hypoxia Off the Changjiang Estuary
Authors:Jianyu Chen  Delu Pan  Mingliang Liu  Zhihua Mao  Qiankun Zhu  Ninghua Chen  Xiaoyu Zhang  Bangyi Tao
Institution:1.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration,Hangzhou,China;2.Department of Marine Science, Ocean College,Zhejiang University,Hangzhou,China;3.Department of Civil and Environmental Engineering,Washington State University,Pullman,USA;4.School of Earth Science,Zhejiang University,Hangzhou,China
Abstract:The Changjiang Estuary is one of the largest estuaries in the world, where hypoxia frequently occurs during the summer season. Recent routine surveys in the observed area found that the low dissolved oxygen (DO) in the summer bottom water was not rapidly expanding with increasing nutrient loads in Changjiang diluted waters. Based on the remote sensing data and in situ data, we examined the historic seasonal hypoxia observations for the bottom waters of the Changjiang Estuary and investigated the short- and long-term effects that runoff had on variations in DO and chlorophyll-a (Chl-a). Our analysis indicated that the recent areal variation in hypoxia was due to the changing Chl-a distribution and stratification conditions. The correspondence between hypoxia and surface Chl-a concentration showed that remotely sensed Chl-a larger than 3.0 mg L?1 was an essential condition for the formation of hypoxia off the Changjiang Estuary. The trend of Chl-a concentration was significantly impacted by the Three Gorges Dam (TGD), and the inter-annual variation of Chl-a was weakly affected by global-scale climate variability. After the TGD impoundment, the sediment loading in the Changjiang runoff and suspended sediments in Changjiang Estuary in August decreased, and the high Chl-a concentration moved landward. These shifted the hypoxia from its optimal forming conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号