首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Joint Simulation of Grade and Rock Type in a Stratabound Copper Deposit
Authors:Mohammad?Maleki  Email author" target="_blank">Xavier?EmeryEmail author
Institution:1.Department of Mining Engineering,University of Chile,Santiago,Chile;2.Advanced Mining Technology Center,University of Chile,Santiago,Chile;3.CSIRO-Chile International Center of Excellence in Mining and Mineral Processing,Santiago,Chile
Abstract:This work deals with the joint simulation of copper grade (as a continuous regionalized variable) and rock type (as a categorical variable) in Lince–Estefanía deposit, located in northern Chile. The region under study is heterogeneous, containing three main rock types (intrusive, andesite and breccia bodies) with different copper grade distributions. To perform joint simulation, the multi-Gaussian and pluriGaussian models are used in a combined form. To this end, three auxiliary Gaussian random fields are considered, one for simulating copper grade, up to a monotonic transformation, and two for simulating rock types according to a given truncation rule. Furthermore, the dependence between copper grade and rock types is reproduced by considering cross correlations between these Gaussian random fields. To investigate the benefits of the joint simulation algorithm, copper grade and rock types are also simulated by the traditional cascade approach and the results are compared. It is shown that the cascade approach produces hard boundaries, that is, abrupt transitions of copper grades when crossing rock-type boundaries, a condition that does not exist in the study area according to the contact analysis held on the available data. In contrast, the joint simulation approach produces gradual transitions of the copper grade near the rock-type boundaries and is more suited to the actual data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号