Mutually consistent estimates of upper mantle composition from seismic velocity contrasts at 400 km depth |
| |
Authors: | Craig R. Bina |
| |
Affiliation: | (1) Department of Geological Sciences, Northwestern University, 60208 Evanston, IL, USA |
| |
Abstract: | Seismologically determined properties of the 400 km discontinuity may be compared to experimentally determined properties of the associated phase transformation in order to place constraints upon upper mantle bulk composition. Disagreement among previous studies is commonly ascribed to differences in elastic equations of state (especially to assumptions about pressure and temperature derivatives) between studies. However, much of the disparity between studies is actually due to the selection of different seismic data functionals (P-wave velocity,S-wave velocity, etc.) for comparison to minnral clasticity calculations, rather than to the differences in elasticity data sets and equations of state. Within any given study, bulk sound velocity comparisons generally yield more olivine-rich compositional estimates than doP-wave velocity comparisons, which in turn indicate more olivine thanS-wave velocities. Indeed, such variation in compositional estimates within a given study (arising from choice of data functional) exceeds the variation between studies (arising from elastic equation of state approx mations). it can be argued that bulk sound velocities are better constrained seismologically than densities and, being independent of assumptions about shear moduli, should provide more reliable compositional estimates thanP-orS-wave velocities.Using recently measured bulk and shear moduli equations of state, mutually consistent estimates of upper mantle olivine content can be obtained fromP-wave,S-wave, and bulk sound velocity contrasts at 400 km only if ln /T of has a value of about–2×10–4K–1, yielding approximately 52% olivine by volume. A value of ln /T smaller in magnitude would require reassessment of several underlying assumptions. |
| |
Keywords: | Seismic discontinuities phase transitions elastic properties equations of state velocity contrasts |
本文献已被 SpringerLink 等数据库收录! |
|