首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Helium, carbon dioxide and oxygen soil gases: Small-scale variations over fractured ground
Authors:RG Gregory  EM Durrance
Institution:Department of Geology, University of Exeter, Exeter EX4 4QE, Great Britain
Abstract:To investigate the control on small-scale variation of He in soil gas exercised by minor fracturing, shallow surveys have been carried out over a cave system formed along an approximately orthogonal set of fractures in Devonian limestone in southwest England. The possibilities that He variation could be related to deep-seated, major fractures or hidden mineralisation, and that other soil gases may also be affected by minor fracturing were assessed by contemporary surveys for CO2 and O2. Comparisons of soil gas values with variations in electrical apparent resistivity were also carried out. Location of fractures with direct connection to the cave system was determined by spiking the cave atmosphere with He and then resurveying after equilibration.The results for CO2 and O2 show anomalies of low magnitude (with respect to atmospheric concentrations), and although they display an antithetic relationship, this is generally poor. There is also no strong correlation with the results of the He surveys either before or after spiking, or with the apparent resistivity values. Moreover, anomalies in CO2 + O2 do not support the pattern of variation shown by the individual gases. These negative results suggest the absence of deep-seated fractures or hidden mineralisation, and show that CO2 and O2 values are independent of minor fracturing. The origin of the variation is attributed to bacteriological productivity.He soil gas concentrations were obtained as disequilibrium values relative to Field Atmospheric Air (ΔHe/ppb-FAA). Positive ΔHe values were generally found to correlate with areas of thin, dry soil cover, enhancement occurring along fracture lines. Negative ΔHe values were also found to correlate with fracture lines, but in these areas the fractures are overlain by a thick soil cover with a high moisture content. It is considered that distinctions can be drawn between water-conducting and dry fractures, and that negative ΔHe values are likely only to be encountered with shallow soil gas samples. Results of spiking with He show a clear distribution of enhanced values along the set of orthogonal fractures, irrespective of the sign of the natural He anomaly. It is considered, therefore, that major deep-seated fractures may result in positive He anomalies superimposed upon negative ΔHe values. This implies that He anomalies must always be related to a local datum value. It is concluded that resolution of interacting variables in the interpretation of soil gas data is facilitated by integrated soil gas surveys.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号