首页 | 本学科首页   官方微博 | 高级检索  
     检索      


NEW EVIDENCE ON NE-SEGMENT OF JINTAN-RUGAO FAULT DISCOVERED BY SHALLOW SEISMIC EXPLORATION METHOD
Authors:GU Qin-ping  YANG Hao  ZHAO Qi-guang  MENG Ke  WANG Jin-yan  LI Yun  MA Dong-wei
Institution:1. Jiangsu Earthquake Agency, Nanjing 210014, China; 2. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China; 3. Nanjing Institute of Geology and Mineral Resources, Nanjing 210016, China; 4. Shenfeng Institute of Geological Techniques Co., Ltd, Shanghai 201107, China
Abstract:The NE-trending regional deep fault, i.e. the Jintan-Rugao Fault, is a boundary fault between the Subei depression and Nantong uplift, and its research has always received broad attention because of its importance and complexity. For the absence of definite proof, there is little consensus regarding the structure and spatial distribution of the fault among geoscientists, and its latest active time is ambiguous. The study of Quaternary activity characteristics of the Jintan-Rugao Fault is of great significance for earthquake trend prediction and engineering safety evaluation, and for earthquake prevention and disaster reduction in Jiangsu Province. In order to investigate the spatial location, characteristics and tectonic features and redefine the activity of the NE-segment of the Jintan-Rugao Fault, and on the basis of likely location and marker beds derived from petroleum seismic exploration sections, we collect and arrange 4 shallow seismic exploration profiles crossing the fault to conduct high-resolution seismic reflection imaging, following the working concept of ‘from known to unknown, from deep to shallow’. In this study, an observation system with trace intervals of 4~6m, shot intervals of 12~18m, and channels of 90~256 and 15~36 folds is used. In addition, by introducing different tonnage vibroseis to suppress the background noise, the raw data with high SNR(signal-noise ratio)can be obtained. By using the above working method and spread geometry, we obtained clear imaging results of the subsurface structure and fault structure in the coverage area of the survey lines. This exploration research accurately locates the NE-segment of Jintan-Rugao Fault, and further shows that it is not a single fault but a fault zone consisting of two normal faults with N-dipping and NE-striking within the effective detection depth. The shallow seismic profiles reveal that the up-breakpoint on the south branch with stronger activity is at depth of 235~243m, which offsets the lower strata of lower Pleistocene. Combining drilling data around the survey lines, we infer the activity time of this fault is early Pleistocene. The results of this paper provide reliable seismological data for determining the location and activity evaluation of the NE-segment of Jintan-Rugao Fault. In eastern China, where the sedimentary layer is thicker, the latest active age of faults can not be determined entirely according to the latest faulted strata. For a fault passing through the thicker area of new deposits, its latest active age should be based on the tectonic background, seismic activity, present tectonic stress field, topographic deformation, structural micro-geomorphological characteristics, sedimentary thickness of new strata, controlling effect of faults on new strata and the latest strata of faults, and combined with upper breakpoints, morphology, structure and occurrence of faults, the active state of the target concealed faults should be analyzed. If the activity of the fault is judged only by the upper faulted point, it may lead to overestimating the age of the fault activity.
Keywords:Jintan-Rugao Fault  NE-segment  shallow seismic exploration  Quaternary activity  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号