首页 | 本学科首页   官方微博 | 高级检索  
     

基于MEA-BP神经网络的卫星钟差预报
引用本文:吕栋,欧吉坤,于胜文. 基于MEA-BP神经网络的卫星钟差预报[J]. 测绘学报, 2020, 49(8): 993-1003. DOI: 10.11947/j.AGCS.2020.20200002
作者姓名:吕栋  欧吉坤  于胜文
作者单位:1. 山东科技大学测绘科学与工程学院, 山东 青岛 266590;2. 中国科学院精密测量科学与技术创新研究院大地测量与地球动力学国家重点实验室, 湖北 武汉 430077
基金项目:国家自然科学基金(41574015;41974008)
摘    要:卫星钟差是影响导航定位精度的重要因素之一,建立高精度的钟差预报模型对高精度定位有重要意义。针对常用模型卫星钟差在短期预报中随时间增加误差积累,以及传统BP神经网络不稳定,容易出现过拟合等问题,本文提出一种基于思维进化算法(MEA)优化的BP神经网络钟差预报模型和算法。首先对原始钟差数据进行一次差处理;然后利用思维进化算法对BP神经网络的初始权值和阈值进行优化,给出该模型进行钟差预报的具体步骤;选用IGS站提供的多天GPS精密钟差产品数据进行试验分析,使用GPS一天中前12 h数据建模,进行2、3、6和12 h的钟差预报。结果表明:利用MEA-BP模型得到的上述4种时段的预报精度分别优于0.36、0.38、0.62和1.56 ns,预报误差曲线变化起伏较小,说明新模型的预报性能优于3种传统模型,新模型在钟差预报短期预报中的实用性及稳定性是较佳的。

关 键 词:卫星钟差  一次差  思维进化算法  BP神经网络  钟差预报  
收稿时间:2020-01-03
修稿时间:2020-05-27

Prediction of the satellite clock bias based on MEA-BP neural network
L,#,Dong,OU Jikun,YU Shengwen. Prediction of the satellite clock bias based on MEA-BP neural network[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 993-1003. DOI: 10.11947/j.AGCS.2020.20200002
Authors:L&#  Dong  OU Jikun  YU Shengwen
Affiliation:1. Geomatic Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;2. State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430077, China
Abstract:The satellite clock bias is one of the important factors that affect the accuracy of navigation and positioning, so establishing a high-precision clock bias prediction model is of great significance to high-precision positioning. Aiming at the problem that satellite clock bias error accumulates by common models over time in short-term prediction, and the easy overfitting and instability of the traditional BP neural network, this paper proposed a model and algorithm of clock bias prediction based on BP neural network optimized by the mind evolutionary algorithm(MEA). First, original clock bias data made once difference to obtain the corresponding once difference sequences. Then, the initial weights and thresholds of the BP neural network were optimized by the mind evolutionary algorithm, the specific steps of using this model for the clock bias prediction were given. The multi-day GPS precision clock bias product data provided by the IGS station is used for experimental analysis. The article used the GPS data for the first 12 h of the day for modeling were listed, and made short-term clock bias prediction within 2, 3, 6 and 12 h. The results showed that the above four periods of prediction precision obtained by using the MEA-BP model were better than 0.36, 0.38, 0.62 and 1.56 ns, respectively. The fluctuation of the prediction error curve was small, and the prediction performance of the new model was better than the three traditional models, which showed the new model is better in practicability and stability in the short-term prediction of clock bias.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号