首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of zircon deformation mechanisms in a shear zone (Lanzo massif,Western-Alps)
Authors:M-A Kaczmarek  SM Reddy  NE Timms
Institution:1. Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico;2. Centro de Geociencias, Universidad Nacional Autónoma de México, Juriquilla, Qro. 76230, Mexico;3. Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Juriquilla, Qro. 76230, Mexico;4. Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo León, Linares, N.L. 67700, Mexico;1. Electron Microscopy Center, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland;2. Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg 1, Zürich CH-8093, Switzerland;3. L-NESS and Department of Physics, Politecnico di Milano and IFN-CNR, Via Anzani 42, Como I-22100, Italy;4. Department of Advanced Materials and Surfaces, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129,CH-8600 Dübendorf, Switzerland
Abstract:Magmatic zircons within two sheared gabbroic dykes from the peridotitic massif of Lanzo (Western-Alps, Italy) revealed evolution of deformation from crystal plasticity to rigid body rotation during shear zone evolution. This is the first time that multiple zircon grains have been analysed in a kinematic context in a shear zone. Zircon grains recorded crystal plastic deformation activating the commonly inferred <100>{001} and <001>{100} glide-systems to the newly identified <001>{110} glide-system. The exact selection of glide-system could be dependant of deformation conditions such as pressure, temperature, and strain rate. Moreover, the activation of one or several glide-systems within a single grain could be favoured by the primary orientation of the grains combined with a high strain rate. In these sheared gabbros, the deformation mechanisms evolve from plastic deformation at low strain rate conditions to increase strain, strain softening and localisation of deformation. The progressive shear zone development and the softening of the matrix relative to the zircon has lead to a switch from crystal-plasticity to rigid body rotation of zircon. The zircon grains rigid body rotation involved that their long axes became parallel to the lineation of the shear zone, causing reorientation and dispersion of the misorientation axes away from kinematic Y.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号