首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The oxidation state of sulfur in magmatic fluids
Authors:Bernd Binder  Hans Keppler
Institution:1. Institut für Mineralogie, Leibniz Universität Hannover, Callinstr. 3, D-30167 Hannover, Germany;2. St. Petersburg State University, Institute of Earth Sciences, V.O., 10 line, 33, St. Petersburg, Russia;1. Dept. Earth and Environmental Sciences, The University of Michigan, Ann Arbor, MI 48109 USA;2. Dept. Earth Sciences, ETH Zurich, CH-8092 Zurich, Switzerland;3. U.S. Geological Survey, 973 Denver Federal Center, Denver, CO 80225 USA;4. Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC & UGR, Avenida las Palmeras 4, Armilla, 18100 Granada, Spain;5. DISTAV, University of Genova, Corso Europa 26, 16132 Genova, Italy;6. Géosciences Montpellier, Univ. Montpellier 2 & CNRS, 34095 Montpellier, France;1. Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Università degli Studi della Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, CE, Italy;2. Institut de Physique du Globe, Sorbonne-Paris Cité, Univ. Paris Diderot, UMR 7154 CNRS, 75005 Paris, France;3. Istituto Nazionale di Geofisica e Vulcanologia, sezione Osservatorio Vesuviano, via Diocleziano 328, 80124 Napoli, Italy;4. Dipartimento di Scienze della Terra e del Mare, Università di Palermo, Via Archirafi 36, 93100 Palermo, Italy;5. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, via U. La Malfa 32, 93100 Palermo, Italy
Abstract:Sulfur compounds in volcanic gases are responsible for the global cooling after explosive eruptions and they probably controlled the early evolution of the Earth's atmosphere. We have therefore studied the oxidation state of sulfur in aqueous fluids under the pressure and temperature conditions and oxygen fugacities typical for magma chambers (0.5–3 kbar, 650–950 °C, Ni–NiO to Re–ReO2 buffer conditions). Sulfur speciation was determined by Raman spectroscopy of quenched fluids trapped as inclusions in quartz. Our results show that sulfur in hydrothermal fluids and volcanic gases is much more oxidized than previously thought and in particular, some explosive eruptions may release a significant fraction of sulfur as SO3 or its hydrated forms. In the pressure range from 500 to 2000 bar, the equilibrium constant K1 of the reaction 2H2S + 3O2 = 2SO2 + 2H2O in aqueous fluids can be described by lnK1 = ?(57.1 ± 7.1) + (173,480 ± 7592)T? 1, where T is temperature in Kelvin. The equilibrium constant K2 for the reaction SO2 + ½O2 = SO3 in aqueous fluids, where SO3 may include hydrated forms, such as H2SO4, was found to be strongly pressure dependent, with lnK2 = ?(5.2 ± 5.7) + (19,243 ± 5993)T? 1 at 1500 bar; lnK2 = ?(11.1 ± 1.3) + (25,383 ± 1371)T? 1 at 2000 bar and lnK2 = ?(22.1 ± 2.2) + (37,082 ± 2248)T? 1 at 2500 bar. Our data imply that volcanoes may directly inject hexavalent sulfur in the form of H2SO4 into the atmosphere, not only on Earth, but possibly also on Venus and on Mars, when it was still tectonically active. Remote measurements from satellites may have underestimated the sulfur yield of some recent eruptions. Moreover, the mechanisms of the interaction of volcanic gases with the stratosphere need to be reconsidered.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号