首页 | 本学科首页   官方微博 | 高级检索  
     


The role of olivine in the crystallization of the prehistoric Makaopuhi tholeiitic lava lake,Hawaii
Authors:Dr. James G. Moore  Dr. Bernard W. Evans
Affiliation:(1) U.S. Geological Survey, Menlo Park, California, USA;(2) Department of Geology and Geophysics, University of California, 94720 Berkeley, California, USA
Abstract:On eruption, the tholeiitic basalt lava of the prehistoric Makaopuhi lake contained nearly seven percent euhedral olivine phenocrysts of approximately Fa14 composition. In the center of the 225 foot vertical section of the lake, the lava became more than 90 percent solid at 1000° C after about 30 years. At the surface the lava was quenched to air temperature, whereas, at the bottom, quenching to 800° C was followed by a 40 year period before the temperature reached 700° C. The olivine phenocrysts settled at an average rate of about 4 × 10–6 cm Sec–1 to form a zone that contains 21 percent olivine 75 feet above the base. Sinking of olivines continued until some time after the beginning of the crystallization of augite and plagioclase. Thin rims of iron-rich olivine (up to Fa55) surrounding the phenocrysts, and a second generation of fine-grained olivines (Fa20 Fa48) restricted to the uppermost 20 feet indicate local extensions of the period of crystallization of olivine. During crystallization of the groundmass and later subsolidus cooling in the range 1000° C to at least as low as 800° C, the olivine phenocrysts were converted to Fa30–40 by interdiffusion of Fe, Mg, Ni, and Mn. Homogenization of Mg-rich cores and Fe-rich margins and equilibration of olivine composition with the groundmass phases was progressively less well achieved toward the top of the lake. Reaction rims around the olivines are composed primarily of Ca-rich pyroxene. Pigeonite crystallized alongside augite except in the uppermost 5 feet where there is abundant ground mass olivine. Poikilitic hypersthene grew at the expense of pre-existing ferromagnesian minerals in the cumulate zone.Publication authorized by the Director, U.S. Geological Survey.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号