首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method
Authors:Maria Antonia Brovelli  Mattia Crespi  Francesca Fratarcangeli  Francesca Giannone  Eugenio Realini  
Institution:aDIIAR, Politecnico di Milano, Polo Regionale di Como, via Valleggio 11 - 22100 Como, Italy;bDITS - Area di Geodesia e Geomatica, Università di Roma “La Sapienza” via Eudossiana, 18 - 00184 Rome, Italy
Abstract:Interest in high-resolution satellite imagery (HRSI) is spreading in several application fields, at both scientific and commercial levels. Fundamental and critical goals for the geometric use of this kind of imagery are their orientation and orthorectification, processes able to georeference the imagery and correct the geometric deformations they undergo during acquisition. In order to exploit the actual potentialities of orthorectified imagery in Geomatics applications, the definition of a methodology to assess the spatial accuracy achievable from oriented imagery is a crucial topic.In this paper we want to propose a new method for accuracy assessment based on the Leave-One-Out Cross-Validation (LOOCV), a model validation method already applied in different fields such as machine learning, bioinformatics and generally in any other field requiring an evaluation of the performance of a learning algorithm (e.g. in geostatistics), but never applied to HRSI orientation accuracy assessment.The proposed method exhibits interesting features which are able to overcome the most remarkable drawbacks involved by the commonly used method (Hold-Out Validation — HOV), based on the partitioning of the known ground points in two sets: the first is used in the orientation–orthorectification model (GCPs — Ground Control Points) and the second is used to validate the model itself (CPs — Check Points). In fact the HOV is generally not reliable and it is not applicable when a low number of ground points is available.To test the proposed method we implemented a new routine that performs the LOOCV in the software SISAR, developed by the Geodesy and Geomatics Team at the Sapienza University of Rome to perform the rigorous orientation of HRSI; this routine was tested on some EROS-A and QuickBird images. Moreover, these images were also oriented using the world recognized commercial software OrthoEngine v. 10 (included in the Geomatica suite by PCI), manually performing the LOOCV since only the HOV is implemented.The software comparison guaranteed about the overall correctness and good performances of the SISAR model, whereas the results showed the good features of the LOOCV method.
Keywords:High resolution satellite imagery  Orientation  Accuracy assessment  Leave-one-out cross validation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号