首页 | 本学科首页   官方微博 | 高级检索  
     检索      


TECTONIC TRANSFER ON THE EASTERN EDGE OF PAMIR
Authors:Li Xiangdong  
Abstract:Deformation during the uplift of Pamir Since the Himalayan movement, the Punjab block of Indian plate has intruded into the interior of Eurasian plate, produced a protrusive Pamir knot in eastern Tethys. The Pamir knot is where crustal shortening is most intensive in Tethys. After India\|Eurasia collision, giant relief resulted from fast uplifting of Karakorum due to the convergence and underplating in northern and southern margins of Karakorum, the uplifting rates changed with times, and thrusting would be one of the most important factors controlling the uplifting. At the same time, large scale strike\|slip faulting could produced large vertical offsets, so that the exhumation of the rocks from middle and lower crust has drawn much attention. The post\|collisional deformation and evolution of Karakorum would involve the processes of continental escape, crustal shortening and thickening, and orogenic collapse in extensional regime. The thrusting started in late Jurassic and early Cretaceous, but two peaks occurred in late Cretaceous and Eocene, respectively. A large amount of klippen produced by thrusting from north to south have been discovered in the northern slope of the Kungai in front of Pamir. Molnar and Tapponnier noted that the mount of crustal shortening in Pamir would be up to 2000km in the past 40~45Ma, and Coward proposed that 300~400km shortening has happened only in southern Pamir to northern Pakistan. In western Pamir from Kabul of Afghanistan to Quatta of Pakistan, the Chaman left\|lateral strike\|slip fault system extends 1000km long. Multiple structural superposition in eastern Pamir, due to the effects of the uplifting of Qinghai\|Tibet plateau, resulted in complex deformation patterns.
Keywords:tectonic  transfer  the eastern edge of Pamir
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号