首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Local meteorology in a northern Himalayan valley near Mount Everest and its response to seasonal transitions
Authors:FangLin Sun  YaoMing Ma  ZeYong Hu
Abstract:An automatic weather station (AWS) has been installed at the Qomolangma Station of the China Academy of Sciences (QOMS) since 2005, in a northern Himalayan valley near Mount Everest, with an altitude of 4,270 m a.s.l.. Nine years of meteorological records (2006–2014) from the automatic weather station (AWS) were analyzed in this study, aiming to understand the response of local weather to the seasonal transition on the northern slopes of Mount Everest, with consideration of the movement of the subtropical jet (STJ) and the onset of the Indian Summer Monsoon (ISM). We found: (1) Both the synoptic circulation and the orography have a profound influence on the local weather, especially the local circulation. (2) Southwesterly (SW) and southeasterly (SE) winds prevail alternately at QOMS in the afternoon through the year. The SW wind was driven by the STJ during the non-monsoon months, while the SE was induced by the trans-Himalayan flow through the Arun Valley, a major valley to the east of Mount Everest, under a background of weak westerly winds aloft. (3) The response of air temperature (T) and specific humidity (q) to the monsoon onset is not as marked as that of the nearsurface winds. The q increases gradually and reaches a maximum in July when the rainy period begins. (4) The alternation between the SW wind at QOMS and the afternoon SE wind in the pre-monsoon season signals the northward shift of the STJ and imminent monsoon onset. The average interval between these two events is 14 days.
Keywords:mountain meteorology  monsoon onset  Trans-Himalayan flow  orography influence  
本文献已被 CNKI 等数据库收录!
点击此处可从《寒旱区科学》浏览原始摘要信息
点击此处可从《寒旱区科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号