首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evidence for the evolution of an oxygen minimum layer at the beginning of S-1 sapropel deposition in the eastern Mediterranean
Authors:K Strohle and M D Krom
Institution:

Department of Earth Sciences, Leeds University, Leeds LS2 9JT, UK

Abstract:The sediments of the eastern Mediterranean basin contain a series of organic-rich sapropels intercalated with organic-poor nannofossil oozes. Until recently the timing of the onset of sapropel formation was not known accurately because of the low resolution achievable by conventional radiocarbon dating. Compilation of all available 14C-AMS dates show that the base of S-1 (the most recent sapropel) was initiated 8800 years B.P. (14C age corrected by 400 years for reservoir effect) under a 500 m water column and moved progressively into deeper water reaching depths of 3500 m at 8200 years B.P. The linear correlation between the age of S-1 onset and water depth suggests that formation of sapropels moved into deeper water at a rate of not, vert, similar1000 m/200 year. A model is suggested in which export production which sank below the well-mixed surface layers (not, vert, similar500 m) was respired consuming dissolved oxygen in the Levantine deep water until a threshold value was reached when sapropels began to be preserved in the sediment. This resulted in a progressively deepening oxygen minimum zone with time until eventually the entire deep water in the basin was oxygen depleted. Assuming that the threshold value for sapropel formation was complete anoxia, it was calculated that primary productivity in the basin during the deposition of S-1 was a factor of 5 greater than that found at present.
Keywords:nerve fiber  protein synthesis  RNA  protein
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号