首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vertical structure of the outer accretion disk in persistent low-mass X-ray binaries
Authors:A V Mescheryakov  N I Shakura  V F Suleimanov
Institution:1.Space Research Institute,Russian Academy of Sciences,Moscow,Russia;2.Moscow State University,Moscow,Russia;3.Kazan Federal University,Kazan,Russia;4.Institute of Astronomy and Astrophysics,Tübingen University,Tübingen,Germany
Abstract:We have investigated the influence of X-ray irradiation on the vertical structure of the outer accretion disk in low-mass X-ray binaries by performing a self-consistent calculation of the vertical structure and X-ray radiation transfer in the disk. Penetrating deep into the disk, the field of scattered X-ray photons with energy E ≳ 10 keV exerts a significant influence on the vertical structure of the accretion disk at a distance R ≳ 1010 cm from the neutron star. At a distance R ∼ 1011 cm, where the total surface density in the disk reaches Σ0 ∼ 20 g cm−2, X-ray heating affects all layers of an optically thick disk. The X-ray heating effect is enhanced significantly in the presence of an extended atmospheric layer with a temperature T atm ≈ (2–3) × 106 K above the accretion disk. We have derived simple analytic formulas for the disk heating by scattered X-ray photons using an approximate solution of the transfer equation by the Sobolev method. This approximation has a ≲10% accuracy in the range of X-ray photon energies E < 20 keV.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号