首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling River Stage‐Discharge Relationships Using Different Neural Network Computing Techniques
Authors:Özgür Kisi  Murat Çobaner
Affiliation:Erciyes University, Engineering Faculty, Civil Eng. Dept., Kayseri, Turkey.
Abstract:One of the most important problems in hydrology is the establishment of rating curves. The statistical tools that are commonly used for river stage‐discharge relationships are regression and curve fitting. However, these techniques are not adequate in view of the complexity of the problems involved. Three different neural network techniques, i. e., multi‐layer perceptron neural network with Levenberg‐Marquardt and quasi‐Newton algorithms and radial basis neural networks, are used for the development of river stage‐discharge relationships by constructing nonlinear relationships between stage and discharge. Daily stage and flow data from three stations, Yamula, Tuzkoy and Sogutluhan, on the Kizilirmak River in Turkey were used. Regression techniques are also applied to the same data. Different input combinations including the previous stages and discharges are used. The models' results are compared using three criteria, i. e., root mean square errors, mean absolute error and the determination coefficient. The results of the comparison reveal that the neural network techniques are much more suitable for setting up stage‐discharge relationships than the regression techniques. Among the neural network methods, the radial basis neural network is found to be slightly better than the others.
Keywords:Neural networks  Stage‐discharge relationship  Rating curve  Regression
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号