首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Tatara-San Pedro Volcano, 36 S, Chile: A Chemically Variable, Dominantly Mafic Magmatic System
Authors:FERGUSON  K M; DUNGAN  M A; DAVIDSON  J P; COLUCCI  M T
Institution:1Stable Isotope Laboratory, Institute for the Study of Earth and Man, Southern Methodist University Dallas, Texas 75275
2Department of Geological Sciences, Southern Methodist University Dallas, Texas 75275
3Department of Earth and Space Sciences UCLA, Los Angeles, California 90024
Abstract:The Tatara shield volcano and subsequent San Pedro cone arethe youngest edifices of the San Pedro-Pellado volcanic complexat 36S in the Chilean Andes. There are multiple basaltic andesitecompositional types present in the Tatara volcano, which couldresult from either contrasting source regions or interactionof primitive liquids with heterogeneous crust. The eruptivestratigraphy of the magma types implies concurrent, isolatedmagma chambers beneath Tatara-San Pedro. Open-system processesand multiple crustal endmembers were involved in calcalkalinedifferentiation series, whereas a tholeitiic series evolvedmainly by fractional crystallization. The glaciated Tatara shield comprises two cycles of compositionallydiverse basaltic andesite lavas, each of which is capped byvolumetrically minor andesite to dacite lavas. Four types (I-IV)of basaltic andesite are defined on the basis of chemical criteria,two in each cycle. The early cycle consists of calcalkalinetype I basaltic andesites, and tholeiitic type II basaltic andesitesand andesites; it culminated in the eruption of a dacite dome.The later cycle comprises intercalated calcalkaline type IIIand IV basaltic andesites, and they are overlain by San Pedroandesites and dacites which appear to be the differentiationproducts of type IV magmas. Tatara lavas were erupted from acommon vent situated beneath the modern San Pedro cone. Althoughthey overlap temporally and spatially, there is little evidenceof chemical interaction among the different lava types, indicatingthat there were two or more magma reservoirs beneath Tatara-SanPedro. Chemical differences among the basaltic andesite types precludederivation of any one from any of the others by fractional crystallization,assimilation-fractional crystallization (AFC), or magma mixing.The differences seem to reflect chemically different parentmagmas. The type I and IV parent liquids were relatively highin MgO, low in CaO and AI2O3, and had high incompatible andcompatible element abundances. The type II and III parents werelower in MgO, higher in A12O3 and CaO, and had lower compatibleand incompatible element abundances. Tholeiitic type II lavasappear to have evolved mainly by fractional crystallization,whereas there is evidence of open-system processes such as AFCand magma mixing in the evolution of the calcalkaline I, III,and IV suites. The chemical evolution of the type III and type IV-San Pedromagma suites has been simulated by assimilation and mixing modelsusing local granites and xenoliths as assimilants. The xenolithsprobably represent portions of a sub-caldera pluton associatedwith the Quebrada Turbia Tuff, which erupted from the Rio Coloradocaldera within the San Pedro-Pellado complex at 0–487Ma. Chemical and textural variations in type III lavas correlatewith stratigraphic position and appear to represent mixing betweena parental type III magma and remnant, evolved type I magmathat was progressively flushed from its chamber concurrent withmixing. The youngest San Pedro flow is chemically zoned fromdacite to basaltic andesite and may have formed by mixing withina conduit during eruption.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号