首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Trojan asteroid belt: Proper elements,stability, chaos and families
Authors:Andrea Milani
Institution:(1) Department of Mathematics, Pisa University, Via Buonarroti 2, I-56100 Pisa, Italy;(2) Groupe E.U.R.O.P.A., Observatoire de Paris/Meudon, France
Abstract:I have computed proper elements for 174 asteroids in the 1 : 1 resonance with Jupiter, that is for all the reliable orbits available (numbered and multi-opposition). The procedure requires numerical integration, under the perturbations by the four major planets, for 1,000,000 years; the output is digitally filtered and compressed into a ldquosynthetic theoryrdquo (as defined within theLONGSTOP project). The proper modes of oscillation of the variables related to eccentricity, perihelion, inclination and node define proper elements. A third proper element is defined as the amplitude of the oscillation of the semimajor axis associated with the libration period; because of the strong nonlinearity of the problem, this component cannot be determined by a simple Fourier transform to the frequency domain. I therefore give another definition, which results in very good stability with time. For 87% of the computed orbits, the stability of the proper elements-at least over 1M yr-is within the following bounds: 0.001AU in semimajor axis, 0.0025 in eccentricity and sine of inclination. Half of the cases with degraded stability of the proper elements are found to be chaotic, with e-folding times between 16,000 and 660,000yr; in some other cases, chaotic behaviour does not result in a significantly decreased stability of the proper elements (stable chaos). The accuracy and stability of these proper elements is good enough to allow a search for asteroid families; however, the dynamical structure of the Trojan belt is very different from the one of the main belt, and collisional events among Trojans can result in a distribution of fragments difficult to identify. The occurrence of couples of Trojans with very close proper elements is proven not to be statistically significant in almost all cases. As the only exception, the couple 1583 Antilochus — 3801 Thrasimedes is significant; however, it is not easy to account for it by a conventional collisional theory. The Menelaus group is confirmed as a strong candidate collisional family; Teucer and Sarpedon could be considered as significant clusters. A number of other clumps are detected (by the same automated clustering method used for the main belt by Zappalà et al., 1990, 1992), but the total number of Trojans with reliable orbits is not large enough to detect many significant candidate families.
Keywords:asteroids  libration  proper elements  stability  chaos  families
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号