Geology of gold-bearing skarn deposits in the middle and lower Yangtze River Valley and adjacent regions |
| |
Authors: | Yiming Zhao Yinan Zhang Chengsi Bi |
| |
Affiliation: | 1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;3. CODES SRC, University of Tasmania, Hobart, Australia;1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, PR China;2. Geological Publishing House, Beijing 100083, PR China;3. Development and Research Center of China Geological Survey, Beijing 100037, PR China;4. Nonferrous Metals Geological Exploration Bureau of East China in Jiangsu Province, Nanjing 210007, China |
| |
Abstract: | The middle and lower Yangtze River Valley and adjacent regions are the most important metallogenic belt of gold (and copper)-bearing skarn deposits in China. The total gold reserves in this belt have been estimated at more than 600 t. The gold-bearing skarns are mainly distributed in the southeastern Hubei, Tongling and northern Anhui regions. Favorable tectonic settings are depressions and fold zones of the platforms, i.e., mobile belts. These skarns are hosted by platformal limestone, dolomitic limestone and dolomite of the Triassic, Carboniferous-Permian and Middle to Lower Cambrian formations. The related intrusions are Yenshanian (180 to 113 Ma) calc-alkaline quartz monzodiorite, granodiorite, quartz monzonite, monzogabbro, and their hybabyssal facies. The intrusions have high Fe2O3/FeO (>0.5) and intermediate initial 87Sr/86Sr ratios (0.7046 to 0.7087). Their REE distribution patterns are LREE-enriched and exhibit smooth, right-dipping curves. These suggest that the source materials mainly came from upper mantle, with contamination by sialic crustal components. The auriferous skarns are both calcic and magnesian, but calcic skarns are most common. The constituent minerals of the calcic skarns are diopside, garnet, wollastonite, vesuvianite and scapolite, whereas magnesian skarns are dominated by forsterite, spinel, diopside, phlogopite, chondrodite and clinohumite, with abundant superimposed serpentine, clinochlore and brucite. The compositions of coexisting pyroxenes and garnets are diopside and andradite, indicating the high oxygen fugacity and low acidity conditions. Gold is closely associated with Cu (Pb, Zn) sulfides and exists mainly in the form of native gold and electrum. Arsenides, tellurides, bismuthides and selenides are present in many ore deposits. Therefore, Cu, As, Bi, Te, Ag, Pb, Zn, Se and Co are the major metals present in the deposits and are important geochemical ore-searching indicators. In some Au (Fe, Cu) magnesian skarns, magnesiomagnetite, magnesioferrite and ludwigite are locally abundant. The metasomatic zoning in many gold skarn deposits is very distinct consisting of an outward sequence of: Fe (Cu)→Cu (Mo)→Cu (Au)→Au (Cu)→Au (Pb, Zn). The geologic characteristics of Au (Cu) skarn deposits that formed in the mobile platformal setting of China have distinct differences compared to Au skarns formed in orogenic belts at convergent plate margins in British Columbia and the western USA. |
| |
Keywords: | geology skarn Yangtze River Valley |
本文献已被 ScienceDirect 等数据库收录! |
|