首页 | 本学科首页   官方微博 | 高级检索  
     


Impacts of warming on root biomass allocation in alpine steppe on the north Tibetan Plateau
Authors:Xing-xing Ma  author-information"  >,Yan Yan  author-information"  >,Jiang-tao Hong  author-information"  >,Xu-yang Lu  author-information"  >,Xiao-dan Wang
Affiliation:1.Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu,China;2.University of Chinese Academy of Sciences,Beijing,China
Abstract:Biomass is an important component of global carbon cycling and is vulnerable to climate change. Previous studies have mainly focused on the responses of aboveground biomass and phenology to warming, while studies of root architecture and of root biomass allocation between coarse and fine roots have been scarcely reported in grassland ecosystems. We conducted an open-top-chamber warming experiment to investigate the effect of potential warming on root biomass and root allocation in alpine steppe on the north Tibetan Plateau. The results showed that Stipa purpurea had significantly higher total root length, root surface area and tips than Carex moocroftii. However, there were no differences in total root volume, mean diameter and forks for the two species. Warming significantly increased total root biomass (27.60%), root biomass at 0–10 cm depth (27.84%) and coarse root biomass (diameter > 0.20 mm, 57.68%) in the growing season (August). However, warming had no significant influence on root biomass in the non-growing season (April). Root biomass showed clear seasonal variations: total root biomass, root biomass at 0–10 cm depth and coarse root biomass significantly increased in the growing season. The increase in total root biomass was due to the enhancement of root biomass at 0–10 cm depth, to which the increase of coarse root biomass made a great contribution. This research is of significance for understanding biomass allocation, carbon cycling and biological adaptability in alpine grassland ecosystems under future climate change.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号