首页 | 本学科首页   官方微博 | 高级检索  
     


Reducing horizontal diffusion errors in σ-coordinate coastal ocean models with a second-order Lagrangian-interpolation finite-difference scheme
Authors:Wenrui Huang  Malcolm Spaulding
Abstract:When a steep bottom slope exists, it is well known that conventional methods for calculating horizontal diffusion in sigma-coordinate coastal ocean models causes spurious transport (e.g. salinity, temperature, and sediments) and currents. In this study, a second-order accurate finite-difference algorithm and program have been developed to reduce the spurious numerical diffusion errors. In the proposed algorithm, the finite differencing is performed in the xz coordinate system to approximate the horizontal gradient. Each variable in the finite differential formation is calculated in the sigma-coordinate grid cells using a second-order Lagrangian interpolation polynomial. In conjunction with a stepwise bottom boundary condition, numerical experiments show that the proposed finite-difference scheme considerably reduces numerical errors compared to conventional approaches when dealing with horizontal diffusion over steep topography, which often occurs in coastal oceans and navigation channels.
Keywords:σ  -Coordinate   Horizontal diffusion   Three-dimensional   Coastal ocean model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号