首页 | 本学科首页   官方微博 | 高级检索  
     


Multiple resonance in one problem of the stability of the motion of a satellite relative to the center of mass
Authors:A. P. Markeev
Affiliation:(1) Institute for Problems of Mechanics, Russian Academy of Sciences, Moscow, Russia
Abstract:We investigate the stability of the periodic motion of a satellite, a rigid body, relative to the center of mass in a central Newtonian gravitational field in an elliptical orbit. The orbital eccentricity is assumed to be low. In a circular orbit, this periodic motion transforms into the well-known motion called hyperboloidal precession (the symmetry axis of the satellite occupies a fixed position in the plane perpendicular to the radius vector of the center of mass relative to the attractive center and describes a hyperboloidal surface in absolute space, with the satellite rotating around the symmetry axis at a constant angular velocity). We consider the case where the parameters of the problem are close to their values at which a multiple parametric resonance takes place (the frequencies of the small oscillations of the satellite’s symmetry axis are related by several second-order resonance relations). We have found the instability and stability regions in the first (linear) approximation at low eccentricities.
Keywords:celestial mechanics  resonance  stability  periodic motion  satellite
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号