首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Water,heat, bombardment: The evolution and current state of (2) Pallas
Authors:Britney Elyce Schmidt  Julie C Castillo-Rogez
Institution:1. Institute for Geophysics, University of Texas at Austin, 10100 Burnett Road, Austin, TX 78758, United States;2. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, United States
Abstract:Using recent constraints on the shape and density of (2) Pallas, we model the thermal evolution of the body as a function of possible formation scenarios that differ in the time of formation and composition assumed for the protoplanet. We develop possible evolution scenarios for Pallas and compare these to available observations. Our models imply two distinct types of end states: those with a hydrosphere and silicate core, and those where the body is dominated by hydrated silicates. We show that for an initial ice-rock mixture with density 2400 kg/m3, Pallas is likely to differentiate and form a rocky core and icy shell. If Pallas accreted from material with lower initial ice content, our models indicate that Pallas’s interior is dominated by hydrated silicates, possibly with a core of anhydrous silicates.We also investigate the possibility that Pallas’s initial density was similar to Ceres’, i.e., that it formed from an ice–rock mixture of density 2100 kg/m3. This implies that the object lost a significant fraction of its hydrosphere as a consequence of thermal oscillations and impacts, a distinct possibility given its density, evidence for impact excavation and current orbital parameters. Its blue spectral slope and observed surface variation may also be evidence for such a process (e.g. Jewitt, D.C. 2002]. Astron. J. 123, 1039–1049; Schmidt, B.E. et al. 2009]. Science 326, 275–279; Yang, B., Jewitt, D. 2010]. Astron. J. 140, 692–698). If Pallas still contains a thin layer of water ice, then that layer corresponds to the bottom of a former icy shell, and as such, could be enriched in non-ice materials such as organics. We evaluate the likeliness of each scenario and show the general magnitude of water loss processes for Pallas. Given a balance of observational and theoretical constraints, we favor a water-rich accretion for Pallas that implies that Pallas has lost a significant fraction of its initial water content through exogenic processes since its internal evolution ceased. We also discuss implications of this work to other hydrated asteroids.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号