Changes in reference evapotranspiration over China during 1960–2012: Attributions and relationships with atmospheric circulation |
| |
Authors: | Rongfan Chai Shanlei Sun Haishan Chen Shujia Zhou |
| |
Affiliation: | 1. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/International Joint Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD), Nanjing University of Information Science and Technology (NUIST), Nanjing, China;2. School of Atmospheric Sciences, Nanjing University of Information Science and Technology (NUIST), Nanjing, China |
| |
Abstract: | This study investigates reference evapotranspiration (ET0) trends in China from 1960 to 2012 based on the Penman–Monteith equation and gridded meteorological measurements. Under the combined impacts of factors influencing ET0 (i.e., net radiation [RN], mean temperature [TAVE], vapour pressure deficit [VPD], and wind speed [WND]), both seasonal and annual ET0 for the whole China and more than half of the grids decreased over the past 53 years. The attribution analyses suggest that for the whole China, the WND is responsible for annual and seasonal ET0 decreases (excluding summer, where RN is responsible). Across China, the annual cause of WND with the largest spatial extent (43.1% of grids) mainly derives from north of the Changjiang River Basin (CJRB), whereas VPD (RN) as a cause is dispersedly distributed (within and to the south of the CJRB). In summer, RN is dominant in more than half of the grids, but the dominance of VPD and WND accounts for approximately 90% of grids during the remaining seasons. Finally, the correlation coefficients between ET0 and the Atlantic Oscillation (AO), North AO, Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) indices with different lead times are calculated. For the whole China, annual and seasonal ET0 always significantly correlate with these indices (excluding the IOD) but with varied lead times. Additionally, near half of the grids show significant and maximum (i.e., the largest one between ET0 and a certain index with a lead time of 0–3 seasons) correlation coefficients of ET0 with PDO in spring and summer, ENSO in autumn, and AO in winter. This study is not only significant for understanding ET0 changes, but it also provides preliminary and fundamental reference information for ET0 prediction. |
| |
Keywords: | attribution analysis China climate change driving forces reference evapotranspiration teleconnection indices |
|
|