首页 | 本学科首页   官方微博 | 高级检索  
     

2013年华中区域中尺度业务数值预报的客观检验
引用本文:王明欢, 赖安伟, 周志敏, 万蓉. 2019: 华中区域中尺度业务模式水平风场预报能力的检验评估. 暴雨灾害, 38(4): 373-379. DOI: 10.3969/j.issn.1004-9045.2019.04.010
作者姓名:王明欢  赖安伟  周志敏  万蓉
作者单位:中国气象局武汉暴雨研究所 暴雨监测预警湖北省重点实验室, 武汉 430205
基金项目:国家重点研发计划(2018YFC1507200);公益性行业(气象)科研专项(GYHY201306076);国家自然科学基金(41328007);湖北省气象局科技发展基金(2015Q03, 2016Q03)
摘    要:

利用经过质量控制的风廓线雷达组网资料(以下简称观测)对华中区域中尺度业务模式(WHMM)水平风场的预报能力进行检验评估,分别从总体、不同高度、不同风速以及单站等方面对全风速(wspd)、纬向风(u)、经向风(v)进行1个月(2013年5月)的统计分析。结果表明:(1)WHMM对风场具有较好的预报能力。其12 h和24 h的预报与观测的相关系数在0.6以上,通过α=0.01的显著性检验,12 h相关系数大于24 h的,预报风速整体存在负偏差,较观测偏小。随预报时效延长,风场的预报误差增大。uwspd的预报能力好于v。(2)在垂直方向上,WHMM的wspduv预报的均方根误差(RMSE)随高度先增加后减小,在1~2 km高度预报误差较大,4~5 km的预报误差较小。(3)按照风廓线雷达测风wspd间隔5 m·s-1将模式预报分组,在30 m·s-1以下不同速度分组中,WHMM 12 h预报的wspduv与观测值的相关系数均大于24 h的,且通过α=0.01的显著性检验,12 h预报的RMSE大于24 h的,并随风速增加而增大。(4)从单站的风廓线来看,模式可以预报出站点上空风场随高度的变化趋势,广州站预报效果好于芜湖和秭归站。



关 键 词:数值预报  华中区域中尺度业务模式  风廓线雷达  水平风
收稿时间:2018-08-08

Assimilation of Wind Profiler Data in the Canadian Meteorological Centre's Analysis Systems
WANG Minghuan, LAI Anwei, ZHOU Zhimin, WAN Rong. 2019: Verification of horizontal wind for Wuhan Mesoscale Model. Torrential Rain and Disasters, 38(4): 373-379. DOI: 10.3969/j.issn.1004-9045.2019.04.010
Authors:WANG Minghuan  LAI Anwei  ZHOU Zhimin  WAN Rong
Affiliation:Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205
Abstract:In order to use quality-controled wind profiler network data (hereinafter referred to as observation) to evaluate the prediction ability of the horizontal wind in Wuhan Mesoscale Model (WHMM), comparison results of one month (May 2013) in the whole domain, and at different heights, speeds and single stations are analyzed, respectively, by calculating the correlation coefficient, bias, and root mean square error. Results show that (1) WHMM has a good performance for the horizontal wind forecasting. The correlation coefficients of 12 h and 24 h forecasts are larger than 0.6 and correspond to α=0.01 significant level. The correlation coefficients of 12 h forecast are greater than that of 24 h, and there are negative biases in the wind speed forecast, which is smaller than the observations.With the increase of the forecast range, the forecasting errors of the wind increase. The prediction of the U-component (u) and the wind speed (wspd) are better than that of V-component (v). (2) In the vertical distribution, the RMSEs of wspd, u and v of WHMM forecast increase first and then decrease with height. The RMSEs at the height of 1~2 km are largest. The RMSEs at the height of 4~5 km are smaller than that at other heights. (3) In groups of ≤ 5 m·s-1, 5-10 m·s-1, 10-15 m·s-1, 15-20 m·s-1 and 20-30 m·s-1, the correlation coefficients between 12 h predictions and observations are larger than those at 24 h, and they all correspond to α=0.01 significant level test. The RMSEs of wspd, u and v of WHMM forecasts increase with the increasing wind speed under different wind speed groups. (4) From wind profiles at a single station, the model can predict the trend of wind field over the station with height. The forecasting skill at Guangzhou station is better than that at Wuhu and Zigui stations.
Keywords:NWP  WHMM  wind profiler radar  horizontal wind
点击此处可从《暴雨灾害》浏览原始摘要信息
点击此处可从《暴雨灾害》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号