首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact histories of angrites,eucrites, and their parent bodies
Authors:Edward R D SCOTT  William F BOTTKE
Institution:1. Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Menoa, Honolulu, Hawai‘i 96822, USA;2. Southwest Research Institute and NASA Lunar Science Institute, 1050 Walnut Street, Suite 400, Boulder, Colorado 80302, USA
Abstract:Abstract– Eucrites, which are probably from 4 Vesta, and angrites are the two largest groups of basaltic meteorites from the asteroid belt. The parent body of the angrites is not known but it may have been comparable in size to Vesta as it retained basalts and had a core dynamo. Both bodies were melted early by 26Al and formed basalts a few Myr after they accreted. Despite these similarities, the impact histories of the angrites and eucrites are very different: angrites are very largely unshocked and none are breccias, whereas most eucrites are breccias and many are shocked. We attribute the lack of shocked and unbrecciated angrites to an impact, possibly at 4558 Myr ago—the radiometric age of the younger angrites—that extracted the angrites from their original parent body into smaller bodies. These bodies, which may have had a diameter of approximately 10 km, suffered much less impact damage than Vesta during the late heavy bombardment because small bodies retain shocked rocks less efficiently than large ones and because large bodies suffer near‐catastrophic impacts that deposit vastly more impact energy per kg of target. Our proposed history for the angrites is comparable to that proposed by Bogard and Garrison (2003) for the unbrecciated eucrites with Ar‐Ar ages of 4.48 Gyr and that for unbrecciated eucrites with anomalous oxygen isotopic compositions that did not come from Vesta. We infer that the original parent bodies of the angrites and the anomalous eucrites were lost from the belt when the giant planets migrated and the total mass of asteroids was severely depleted. Alternatively, their parent bodies may have formed in the terrestrial planet region and fragments of these bodies were scattered out to the primordial Main Belt as a consequence of terrestrial planet formation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号