首页 | 本学科首页   官方微博 | 高级检索  
     


The Madinah eruption,Saudi Arabia: Magma mixing and simultaneous extrusion of three basaltic chemical types
Authors:Victor E. Camp  Peter R. Hooper  M. John Roobol  D. L. White
Affiliation:(1) Saudi Arabian Deputy Ministry for Mineral Resources, Jiddah, Saudi Arabia;(2) Department of Geology, Washington State University, 99 164 Pullman, WA, USA
Abstract:During a 52-day eruption in 1256 A.D., 0.5 km3 of alkali-olivine basalt was extruded from a 2.25-km-long fissure at the north end of the Harrat Rahat lava field, Saudi Arabia. The eruption produced 6 scoria cones and a lava flow 23 km long that approached the ancient and holy city of Madinah to within 8 km. Three chemical types of basalt are defined by data point clusters on variation diagrams, i.e. the low-K, high-K, and hybrid types. All three erupted simultaneously. Their distribution is delineated in both scoria cones and lava flow units from detailed mapping and a petrochemical study of 135 samples. Six flow units, defined by distinct flow fronts, represent extrusive pulses. The high-K type erupted during all six pulses, the low-K type during the first three, and the hybrid type during the first two.Three mineral assemblages occur out of equilibrium in all three chemical types.Assemblage 1 contains resorbed olivine and clinopyroxene megacrysts and ultramafic microxenoliths (Fo90 + Cr spinel + Cr endiopside) which fractionated within the spinel zone of the mantle.Assemblage 2 contains resorbed plagioclase megacrysts (An60) with olivine inclusions (Fo78) which fractionated in the crust.Assemblage 3 contains microphenocrysts of plagioclase and olivine in a groundmass of the same minerals with late-crystallizing titansalite and titanomagnetite; assemblage 3 crystallized at the surface and/or in the upper crust. Each assemblage represents a distinct range in PTX environment, suggesting that their coexistence in each chemical type may be a function of magma mixing. Such a process is confirmed by variable ratios of incompatible element pairs in a range of analyses.All three chemical types are products of mixing. Some of the hybrid types may have developed from surface mixing of the low-K and high-K lavas; however, the occurrence of all three types at the vent system suggests that subsurface mixing was the dominant process. We suggest that the Madinah flow was extruded from a heterogeneous magma chamber containing vertically stacked sections equivalent to the six eruptive pulses. This chamber may have developed contemporaneously with magma mixing when a crustal reservoir containing a magma in equilibrium with assemblage 2 was invaded by a more primitive magma containing cognate microxenoliths and megacrysts of assemblage 1.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号