首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Origin and deformation of intra-salt sulphate layers: an example from the Dutch Zechstein (Late Permian)
Authors:B C Biehl  L Reuning  F Strozyk  P A Kukla
Institution:1. Energy and Mineral Resources Group (EMR), Geological Institute, RWTH Aachen University, Wuellnerstra?e 2, 52056, Aachen, Germany
Abstract:From salt mine galleries and well data it is known that thick rock salt layers can contain anhydrite and carbonate layers with thicknesses on the millimetre to tens of metre scale. The relatively thick Zechstein 3 anhydrite–carbonate layer in the northern Netherlands has been studied previously using 3-D seismic data. Observations from geophysical well logs in this study reveal the presence of thin sulphate layers on the sub-seismic scale imbedded in the Zechstein 2 (Z2) salt. Core samples, thin sections, seismic data and geochemical measurements were used to determine the mineralogy and origin of one of these Z2 sulphate layers. Bromine analyses show that they mark a freshening event in the Z2 salt, which can be correlated over large distances in the northern Netherlands. Their core-calibrated log signature indicates that the Z2 sulphate layers consist either of pure anhydrite or of anhydrite and polyhalite. The mineralogy and thickness of the sulphate layers are interpreted to vary between synsedimentary morphologic lows (thin anhydrite–polyhalite couplets) and highs (thicker anhydrite layers). Such a combination of core observations and well log analysis is a powerful tool to detect lateral trends in evaporite mineralogy and to reconstruct the environmental setting of their formation. Salt internal geometries can further be used to distinguish between different deformation mechanisms. In our study area, the distribution of sulphate layers within the Z2 salt indicates that subjacent salt dissolution was not the dominant process leading to salt-related deformation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号