首页 | 本学科首页   官方微博 | 高级检索  
     检索      

雾灵山GPS掩星观测实验分析
引用本文:宫晓艳,胡雄,吴小成,张训械,宋淑丽.雾灵山GPS掩星观测实验分析[J].应用气象学报,2008,19(2):180-187.
作者姓名:宫晓艳  胡雄  吴小成  张训械  宋淑丽
作者单位:1.中国科学院空间科学与应用研究中心, 北京 100080
基金项目:国家自然科学基金 , 中国科学院知识创新工程项目 , 航天领域高技术课题 , 中国气象局科技发展司社会公益项目
摘    要:在高山的山顶上, 利用GPS接收机跟踪低仰角和负仰角的GPS卫星信号, 即山基GPS掩星观测, 该技术可以获得低层大气折射指数剖面。2005年8月1—29日, 在河北雾灵山 (40.60°N, 117.48°E, 海拔2118 m) 开展了山基GPS掩星观测实验, 共获得576 h的原始观测数据, 跟踪到掩星事件共1136次, 其中621次上升掩星事件, 515次下降掩星事件, 平均每小时观测到2次掩星事件, 经反演成功获得939个大气折射指数剖面。分析结果表明:山基掩星事件发生时间 (地方时) 大体呈平均分布; 山基掩星事件持续时间大部分在15~20 min; 山基掩星事件跟踪最低负仰角分布的峰值出现在-3°~-2.5°之间, 所跟踪到的最低负仰角达到-4.994°, 出现在正南稍偏东方向; 下降掩星事件的最低仰角分布明显低于上升掩星事件的最低仰角分布。上述实验结果表明:山基掩星观测每天可为低层大气环境监测提供大量时空分布的折射率数据, 具有潜在的应用前景。

关 键 词:山基GPS掩星技术    掩星事件    大气折射指数    最低仰角
收稿时间:2007-04-06
修稿时间:2007年4月6日

Mountain based GPS Occultation Observation Experiment at Mt Wuling
Gong Xiaoyan,Hu Xiong,Wu Xiaocheng,Zhang Xunxie,Song Shuli.Mountain based GPS Occultation Observation Experiment at Mt Wuling[J].Quarterly Journal of Applied Meteorology,2008,19(2):180-187.
Authors:Gong Xiaoyan  Hu Xiong  Wu Xiaocheng  Zhang Xunxie  Song Shuli
Institution:1.Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 1000802.Graduate University of Chinese Academy of Sciences, Beijing 1000493.Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
Abstract:Mountain-based GPS occultation technique is referred to as receiving the radio signals of GPS satellites with very low elevations and negative elevations using a GPS receiver at the top of high mountain and retrieving the lower atmospheric refractivity profiles. A mountain-based GPS occultation observation experiment is performed at Mt Wuling (40.60°N, 117.48°E, 2118 m) in Hebei Province during August 1—29, 2005. The campaign is organized by China Meteorological Administration, a few other organizations participate in the experiment. Totally 576-hour raw observation data are collected by JAVAD two-frequency GPS receiver provided by Center for Space Science and Applied Research, Chinese Academy of Sciences, and 1136 occultation events are recorded. Out of the total occultation events, 621 are rising occultation events and 515 are setting occultation ones. There are about 2 occultation events observed in one hour on average. Detailed statistics and analyses are made to show features of all the observed occultation events, such as the distribution of the occurring time, the duration, minimum elevations and azimuth. The results are as follows. The distribution of the occurring time of the observed mountain-based occultation events is nearly random uniform, and it seems that there are more observed occultation events for two periods of time, one is from 20:00 (local time) to 22:00, and the other is from 04:00 to 06:00. The duration of most occultation events is from 15 minutes to 20 minutes, and about 18 minutes on average. The range of azimuth of observed occultation events is between 110° and 290°, the peak of the distribution of azimuth is between 180° and 195°. These features are related to some important factors, such as the distribution of GPS satellites' orbits, the location of GPS receiver and the direction which the antenna points to. The minimum elevations of most occultation events are between -3° and -2.5°, the lowest negative elevations of all the events is -4.994° from south direction, which is possibly resulted from the landform around the observation station. The minimum elevations of setting occultation events are lower than that of rising occultation events obviously. It shows that the ability to track rising occultation events of commercial GPS receiver is weak. If the same GPS satellite is occulted, it is occulted mostly from the same azimuth, and their occurring time is close (their differences are usually less than two hour). This is determined by distribution of GPS satellites' orbits, cycle and features of movement. A new effective method is provided by mountain-based occultation observations for monitoring lower atmospheric environment. This emerging technique has potential applications. Above are the first statistic and analytic results from observed data by which reference can be provided for mountain-based occultation observation's operation application.
Keywords:mountain based GPS occultation technique  occultation event  atmosphe ric refractivity  minimum elevations
本文献已被 万方数据 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号