首页 | 本学科首页   官方微博 | 高级检索  
     


The Homogeneous Finite-Difference Formulation of the P-SV-Wave Equation of Motion
Authors:Slawinski  Raphael S.  Krebes  Edward S.
Affiliation:(1) Department of Geology and Geophysics, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
Abstract:Two different approaches to finite-difference modeling of the elastodynamic equations have been used: the heterogeneous and the homogeneous. In the heterogeneous approach, boundary conditions at interfaces are treated implicitly; in the homogeneous, they are explicitly discretized. We present a homogeneous finite-difference scheme for the 2-D P-SV-wave case. This scheme represents a generalization of earlier such schemes, being able to model media with arbitrary non-uniformities, provided only that all interfaces are aligned with the numerical grid. We perform a detailed comparison of the generalized homogeneous scheme with the analogous heterogeneous scheme, and show the two schemes to be identical for media with a spatially constynt Poisson's ratio. For media where Poisson's ratio is spatially varying, the schemes differ by terms first-order in the spatial step size. However, a comparison of the numerical results produced by the two schemes shows that the resulting differences are negligible for a wide range of values of the Poisson's ratio contrast.
Keywords:finite-difference modeling  boundary conditions
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号