首页 | 本学科首页   官方微博 | 高级检索  
     

床面粗糙形态的二元分形插值模拟
引用本文:钟亮,许光祥. 床面粗糙形态的二元分形插值模拟[J]. 水科学进展, 2011, 22(5): 662-667. DOI: 32.1309.P.20110911.1135.013
作者姓名:钟亮  许光祥
作者单位:1.重庆交通大学省部共建水利水运工程教育部重点实验室, 重庆 400074;
基金项目:高等学校博士学科点专项科研基金资助课题(20070618003); 重庆交通大学省部共建水利水运工程教育部重点实验室开放基金资助课题(SLK2009A02)~~
摘    要:针对床面粗糙形态具有自相似性的特点,应用二元分形插值迭代函数系统,对床面粗糙形态进行了分形插值模拟,模拟中分形插值邻域Ak根据Kriging空间插值方法的变异函数球状模型确定,垂直比例因子sm,n通过基于插值点数据的多元统计分析确定.结果表明:分形插值重构的床面粗糙形态与原床面形态的相似程度将随着插值点信息量ic的增加...

关 键 词:河道  床面粗糙形态  二元分形插值模拟  迭代函数系统  插值邻域  垂直比例因子
收稿时间:2010-10-20

Bivariate fractal interpolation for estimating rough channel bedform
ZHONG Liang,XU Guang-xiang. Bivariate fractal interpolation for estimating rough channel bedform[J]. Advances in Water Science, 2011, 22(5): 662-667. DOI: 32.1309.P.20110911.1135.013
Authors:ZHONG Liang  XU Guang-xiang
Affiliation:1.Key Laboratory for Hydraulic and Waterborne Transportation Engineering of Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China;2.School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
Abstract:The rough bedform is estimated using the self-similar characteristics of bedforms together with the bivariate fractal interpolation method that is based upon the iterative function system.The interpolation fields Ak are determined using the Kriging interpolation method with a spherical variogram for Kriging.The vertical scaling factors sm,n are obtained through the use of the multi-variate statistical analysis of interpolated data.The results show that the similarity between the estimated bedforms and the i...
Keywords:stream  rough channel bedforms  bivariate fractal interpolation method  iterated function system  interpolation field  vertical scaling factor  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《水科学进展》浏览原始摘要信息
点击此处可从《水科学进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号