首页 | 本学科首页   官方微博 | 高级检索  
     

神狐海域水合物钻探区第四纪米氏旋回高频层序地层划分
引用本文:刘杰, 孙美静, 苏明, 吴能友, 严恒, 杨睿. 神狐海域水合物钻探区第四纪米氏旋回高频层序地层划分[J]. 海洋地质与第四纪地质, 2016, 36(2): 11-18. doi: 10.16562/j.cnki.0256-1492.2016.02.002
作者姓名:刘杰  孙美静  苏明  吴能友  严恒  杨睿
作者单位:1. 中国科学院天然气水合物重点实验室, 广州 510640;;; 2. 中国地质调查局广州海洋地质调查局, 广州 510640;;; 3. 中国地质调查局青岛海洋地质研究所, 青岛 266071;;; 4. 中海石油有限公司湛江分公司, 湛江 524057
基金项目:国家自然科学基金项目(41576048);油气藏地质及开发工程国家重点实验室(成都理工大学)开放基金项目(PLC201407);中国地质大学构造与油气资源教育部重点实验室开放基金(TPR-2014-14);中科院可再生能源重点实验室基金项目(y507j61001)
摘    要:基于高分辨率2D地震资料,建立了珠江口盆地白云凹陷第四纪层序地层格架,将第四纪沉积充填序列划分为3个体系域,即低位体系域(LST)、海侵体系域(TST)、高位体系域(HST)。根据陆坡进积特征和地层叠加样式、垂向上侵蚀特征变化(其上见下切水道)、中频强振幅同相轴的空间可追踪性等地震反射特征,将高位体系域(HST)进一步划分为两个沉积旋回单元HST-I、HST-Ⅱ。在等时地层格架的约束下,以神狐海域水合物钻探区well-I钻井作为研究对象,选择自然伽马曲线(GR)通过频谱分析进行米兰科维奇旋回特征的研究,识别出偏心率周期(95 ka)、斜率周期(40 ka)和岁差周期(22、19ka)。研究区第四纪沉积充填序列主要受偏心率周期(95 ka)的控制,偏心率(95 ka)对应于旋回厚度11.494 m,以此周期和对应的旋回厚度计算出钻探区第四纪沉积速率为12.1 cm/ka。通过构建滤波器对测井曲线进行滤波处理,发现95 ka的偏心率控制的优势旋回个数在20个左右。对斜率周期(40 ka)识别出的高频旋回采用Fischer图解法求取其可容纳空间变化曲线,检验了高精度层序地层划分的正确性。

关 键 词:米兰科维奇旋回   频谱分析   高频层序   神狐海域   白云凹陷
收稿时间:2015-11-02
修稿时间:2015-12-31

HIGH-RESOLUTION SEQUENCE STRATIGRAPHY ON MILANKOVITCH CYCLES IN THE GAS HYDRATE DRILLING AREA OF SHENHU WATERS
LIU Jie, SUN Meijing, SU Ming, WU Nengyou, YAN Heng, YANG Rui. HIGH-RESOLUTION SEQUENCE STRATIGRAPHY ON MILANKOVITCH CYCLES IN THE GAS HYDRATE DRILLING AREA OF SHENHU WATERS[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 11-18. doi: 10.16562/j.cnki.0256-1492.2016.02.002
Authors:LIU Jie  SUN Meijing  SU Ming  WU Nengyou  YAN Heng  YANG Rui
Affiliation:1. Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;;; 2. Guangzhou Marine Geological Survey, Guangzhou 510760, China;;; 3. Qingdao Institute of Marine Geology, Qingdao 266071, China;;; 4. Zhanjiang Division of CNOOC Ltd., Zhanjiang 524057, China
Abstract:The Quaternary sequence stratigraphic framework was established for the northern slope of the Baiyun Sag, the Pearl River Mouth Basin, based on high resolution 2D seismic profiles. The deposit is divided into three systems tracts, i.e. the LST (lowstand systems tract, LST), TST (transgressive systems tract, TST) and HST (highstand systems tract, HST). The HST could be further divided into two depositional units, HST-I and HST-Ⅱ, according to the prograding styles of the slope, the vertical stacking patterns, the change in erosion features, and the continuity of high-amplitude seismic reflectors. Under the constraints of stratigraphic framework, the natural gamma data from Well-I of the gas hydrate drilling area of the Shenhu waters have been used for spectral analysis. The Milankovitch cycles are identified by spectrum analysis, including the eccentricity cycles (95 ka), obliquity cycle (40 ka), precession cycles (22 ka, 19ka), and the sequence is mainly controlled by the eccentricity cycle (95 ka), corresponding to a thickness of 11.494 m. It is found that the number of dominant cycles controlled by the eccentricity cycles (95 ka) is about 20 after filtering of logs. The sedimentation rate in the drilling area is 12.1 cm/ka calculated with the eccentricity cycle and the corresponding thickness of the cycle. The accommodation change curves of the sequences obtained using Fischer diagram can verify the high resolution sequence stratigraphic division.
Keywords:Milankovitch cycles  spectral analysis  high-frequency cycles  Shenhu waters  Baiyun Sag
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋地质与第四纪地质》浏览原始摘要信息
点击此处可从《海洋地质与第四纪地质》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号