首页 | 本学科首页   官方微博 | 高级检索  
     


Hf isotopic fingerprinting of geodynamic settings: Integrating isotopes and numerical models
Affiliation:1. Centre for Exploration Targeting, School of Earth Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;2. Centre for Exploration Targeting - Curtin Node, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mineral Resources, 26 Dick Perry Avenue, Kensington, WA 6151, Australia;4. Mineral Exploration Research Centre (MERC), Harquail School of Earth Sciences and Goodman School of Mines, Laurentian University, Sudbury, Ontario P3E 2C6, Canada;1. Department of Geosciences, Biogeology, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany;2. Senckenberg Research Centre for Human Evolution and Paleoenvironment, University of Tübingen, Hölderlinstrasse 12, 72076 Tübingen, Germany;3. Instituto de Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano (INCUAPA-CONICET), Universidad Nacional del Centro de la provincia de Buenos Aires, Del Valle 5737, B7400JWI Olavarría, Buenos Aires, Argentina;4. Museo Municipal de Ciencias Naturales Pachamama, Santa Clara del Mar, Argentina;5. Universidad Nacional de Mar del Plata, Argentina;6. Div. Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque, 1900 La Plata, Argentina;7. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza s/n, 5301 Anillaco, La Rioja, Argentina;1. Wits Isotope Geoscience Laboratory (WIGL), School of Geosciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa;2. School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA6009, Australia;1. Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany;2. Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, ul. Senacka 1, Kraków 31-002, Poland;3. GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany;4. Leibniz Laboratory for Radiometric Dating and Stable Isotope Research, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 11, 24118 Kiel, Germany;5. Faculty of Geology, University of Warsaw, Poland;1. Department of Research and Cooperation, Mongolian University of Science and Technology, 8th khoroo, Baga toiruu 34, Sukhbaatar district, Ulaanbaatar 14191, Mongolia;2. Department of Earth Sciences and Astronomy, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;3. Department of Biosphere-Geosphere Science, Faculty of Biosphere-Geosphere Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi 700-0005, Japan;4. Department of Chemistry, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo 171-8588, Japan;5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan;1. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 210023 Nanjing, China;2. Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France;1. Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China;2. School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China;3. Department of Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
Abstract:Hf isotopes have proven invaluable in understanding the evolution of Earth's crust-mantle system, but their use in reconstructing tectonic environments, in many cases, remains equivocal. In this study, we introduce a new approach to predict the Hf isotopic evolutionary pattern for rifting and collision based on the integration of numerical models and 176Hf/177Hf isotopes. The geodynamic numerical models allow us to estimate the proportion of juvenile material added to the crust through time. On the basis of this proportion, we calculate changing 176Hf/177Hf ratios using mixing models. Predicted Hf isotopic patterns generated through this numerical approach imply that juvenile signals are observed during back-arc extension, whereas evolved signatures dominate collisional settings. We use this novel modeling approach in the case study region of the Halls Creek Orogen to elucidate its tectonic setting through time. In addition, the geochemical features of magmatic rocks in the case study region imply partial melting of a sub-arc mantle wedge with magma-crust interaction on ascent in a convergent margin setting. The links between predicted Hf isotopic evolution, geodynamic numerical models, whole rock geochemistry and measured zircon Hf isotopic evolution trend resolve three discrete stages in the tectonomagmatic development of the Halls Creek Orogen: (1) oceanic crust subduction; (2) back-arc formation with addition of juvenile mantle input; and (3) docking of the North Australian and Kimberley cratons resulting in the development of mixed-source magmatism formed in a collisional setting. We provide a new method to validate geodynamic models with isotopic datasets, which should lead to more rigorous understanding of crustal evolution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号