首页 | 本学科首页   官方微博 | 高级检索  
     


Early Paleozoic magmatism and metallogeny related to Proto-Tethys subduction: Insights from volcanic rocks in the northeastern Altyn Mountains,NW China
Affiliation:1. School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China;2. Guangdong Provincal Key Lab of Geodynamics and Geohazards, Sun Yat-sen University, Guangzhou 510275, China;3. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;4. Bureau of Xinjiang Geology and Mineral Resources Development, Urumqi 830000, China;1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;2. Shaanxi Geological Exploration Institute of Geology and Mine Bureau, Xi''an 710065, China;3. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China;1. Wuhan Center of Geological Survey, China Geological Survey, Wuhan 430205, China;2. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;3. Department of Earth and Environmental Sciences, University of Windsor, Ontario, Canada;4. State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China;5. Key Laboratory of Marine Hydrocarbon Resources Environmental Geology, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China;6. Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China;7. School of Earth Sciences, China University of Geosciences Wuhan, Wuhan 430074, China;1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, China;2. College of Geoscience, China University of Petroleum, Beijing, China;3. Key Laboratory of Tectonics and Petroleum Resources of the Ministry of Education, School of Earth Resources, China University of Geosciences, Wuhan, China;4. Energy & Geoscience Institute, University of Utah, Salt Lake City, UT, USA;5. Unconventional Petroleum Research Institute, China University of Petroleum, Beijing, China;6. Centre for Earth Sciences, Indian Institute of Science, Bangalore, India;7. School of Earth Sciences and Resources, China University of Geosciences Beijing, Beijing 100083, China;8. Department of Earth Sciences, University of Adelaide, SA 50005, Australia;9. Earth Dynamics Research Group, TIGeR (The Institute of Geoscience Research), Department of Applied Geology, Curtin University, Perth, Australia;10. Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA;11. Department of Computer Science, University of Idaho, Moscow, ID, 83843, USA;1. CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China;2. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China;3. Institute of Oil & Gas, Peking University, Beijing 100871, China;4. MIR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract:Remnants of the Proto-Tethys are mainly preserved in the region between south of the North China-Tarim Block and north of Qiangtang-Sibumasu/Baoshan Blocks. Magmatic-metallogenic events related to the Proto-Tethyan subductions were rarely reported, and the subduction history and polarity of the Proto-Tethyan are still under debate. Here, we presented new data of zircon Usingle bondPb ages, whole-rock Sr–Nd–Pb isotopes, major and trace elements and zircon Hf isotopes for the volcanic rocks in the northeastern Altyn Mountains. Information of over 14 volcanic-hosted deposits/prospects in the region has been compiled. These volcanic ore hosts consist mainly of basaltic andesite, andesite, dacite and rhyolite rocks. The andesite and rhyolite rocks are newly zircon Usingle bondPb dated to be Late Cambrian-Early Ordovician (andesite: 490.5 ± 5.2 Ma; rhyolite: 492.6 ± 2.9 Ma and 491.6 ± 5.6 Ma), representing the timing of volcanism and VMS (Volcanogenic Massive Sulfide) mineralization. All the volcanic rocks belong to the high-K calc-alkaline and shoshonite series: the andesite rocks from the Kaladawan area in north of the region display arc geochemical affinities and contain (87Sr/86Sr)i (0.7082–0.7083) and εNd(t) (−9.7 to −7.6), indicating that they were likely formed by partial melting of the mantle wedge with subducted sediment inputs. The rhyolite rocks from the Kaladaban area in south of the region are characterized by high SiO2 (64.46–78.55 wt%), low alkali (Na2O + K2O, 3.46–7.17 wt%), and contain (87Sr/86Sr)i (0.7063–0.7095), εNd(t) (−6.6 to −1.5), and zircon εHf(t) (−5.5 to 5.4), indicating that they were likely derived from partial melting of the lower crust with depleted mantle inputs. Rock assemblage and geochemistry suggest that volcanic rocks in the northeastern Altyn Mountains may have formed in a continental arc setting. Their spatial distributions with respect to the ophiolites in the region suggest that the subduction was likely south-dipping. This subduction-related arc magmatism may have formed the many important VMS and porphyry–skarn deposits in the region.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号