首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluating weather observations and the Climate Forecast System Reanalysis as inputs for hydrologic modelling in the tropics
Authors:Daniel A Auerbach  Zachary M Easton  M Todd Walter  Alexander S Flecker  Daniel R Fuka
Institution:1. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA;2. Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA;3. Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
Abstract:Correctly representing weather is critical to hydrological modelling, but scarce or poor quality observations can often compromise model accuracy. Reanalysis datasets may help to address this basic challenge. The Climate Forecast System Reanalysis (CFSR) dataset provides continuous, globally available records, and CFSR data have produced satisfactory hydrological model performance in some temperate and monsoonal locations. However, the use of CFSR for hydrological modelling in tropical and semi‐tropical basins has not been adequately evaluated. Taking advantage of exceptionally high rainfall station density in the catchments of the Rio Grande de Loiza above San Juan, Puerto Rico, we compared model performance based on CFSR records with that based on publicly available weather stations in the Global Historical Climate Network (GHCN, n = 21) and on a dataset of rainfall records maintained by the United States Geological Survey Caribbean Water Science Center (USGS, n = 24). For an implementation of the Soil and Water Assessment Tool (SWAT) with subbasins defined at 11 streamflow gages, uncalibrated measures of Nash–Sutcliffe efficiency (NSE) were >0 at 8 of 11 gages using USGS precipitation data for daily simulations over the period 1998–2012, but were <0 using GHCN weather station records (8 of 11) and CFSR reanalysis data (9 of 11). Autocalibration of individual SWAT models for each of the 11 basins against each of the available weather datasets yielded NSE values > 0 using all precipitation inputs, including CFSR. However, the ground weather station closest to the geographic basin centre produced the highest NSE values in only 5 of 11 cases. The spatially interpolated CFSR data performed as well or better than single ground observations made further than 20–30 km, and sometimes better than individual weather stations <10 km from the basin centroid. In addition to demonstrating the need to evaluate available weather inputs, this research reinforces the value of CFSR data as a means to supplement ground records and consistently determine a baseline for hydrologic model performance. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:precipitation  Soil and Water Assessment Tool  Climate Forecast System Reanalysis  Puerto Rico  tropical watershed modelling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号