首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fractured reservoir delineation using multicomponent seismic data
Authors:Xiang-Yang Li
Institution:Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, UK
Abstract:The characteristic seismic response to an aligned-fracture system is shear-wave splitting, where the polarizations, time-delays and amplitudes of the split shear waves are related to the orientation and intensity of the fracture system. This offers the possibility of delineating fractured reservoirs and optimizing the development of the reservoirs using shear-wave data. However, such applications require carefully controlled amplitude processing to recover properly and preserve the reflections from the target zone. Here, an approach to this problem is suggested and is illustrated with field data. The proposed amplitude processing sequence contains a combination of conventional and specific shear-wave processing procedures. Assuming a four-component recording (two orthogonal horizontal sources recorded by two orthogonal horizontal receivers), the split shear waves can be simulated by an effective eigensystem, and a linear-transform technique (LTT) can be used to separate the recorded vector wavefield into two principal scalar wavefields representing the fast and slow split shear waves. Conventional scalar processing methods, designed for processing P-waves, including noise reduction and stacking procedures may be adapted to process the separated scalar wavefields. An overburden operator is then derived from and applied to the post-stacked scalar wavefields. A four-component seismic survey with three horizontal wells drilled nearby was selected to illustrate the processing sequence. The field data show that vector wavefield decomposition and overburden correction are essential for recovering the reflection amplitude information in the target zone. The variations in oil production in the three horizontal wells can be correlated with the variations in shear-wave time-delays and amplitudes, and with the variations in the azimuth angle between the horizontal well and the shear-wave polarization. Dim spots in amplitude variations can be correlated with local fracture swarms encountered by the horizontal wells. This reveals the potential of shear waves for fractured reservoir delineation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号