首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calculation of Garnet Fractionation in Metamorphic Rocks, with Application to a Flat-Top, Y-rich Garnet Population from the Ruhla Crystalline Complex, Central Germany
Authors:ZEH  A
Institution:MINERALOGISCHES INSTITUT DER UNIVERSITÄT WÜRZBURG, AM HUBLAND D-97074 WÜRZBURG, GERMANY
Abstract:A mathematical approach is presented for the calculation ofthe major and trace element fractionation that is caused bygrowth of zoned garnet in metamorphic rocks. This approach isbased on textural and compositional parameters directly obtainedfrom natural examples. It takes into account the mode and compositionof all unzoned minerals, as well as the mode, crystal size distributionand zonation patterns of garnet grains of different sizes withina certain rock volume. These parameters can be used to fit functionsfrom which the amount of garnet fractionation at each step ofa garnet growth history can be calculated. The approach is testedfor two compositionally distinct domains within a single garnet–biotitegneiss sample from the Ruhla Crystalline Complex. This samplecontains unusual flat-top garnet grains with Y2O3-rich cores.It is shown that MnO, FeO and Y2O3 are extremely fractionatedduring garnet growth, but in different ways, and that MnO fractionationdoes not obey a Rayleigh function. To demonstrate the influenceof garnet fractionation on P–T path estimates, quantitativephase diagrams in the model system Na2O–K2O–CaO–MnO–FeO–MgO–Al2O3–TiO2–SiO2–H2Oare constructed by means of the computer software THERMOCALC.The good agreement between calculated and observed mineral assemblagesand garnet compositions for all fractionation steps indicatesthat the new approach can be used to infer detailed P–Tpaths, even for rocks that contain complexly zoned garnet grains.The results indicate that garnet growth in the metapelite underinvestigation occurred along a linear P–T path from 470°Cand 2·7 kbar to 580°C and 8·5 kbar. The resultsalso show that garnet cores with high Y2O3 contents of about1 wt % nucleated over a temperature interval of c. 90°C,indicating that Y in garnet is relatively insensitive to temperaturechanges. KEY WORDS: garnet; fractionation; pseudosection; yttrium; THERMOCALC
Keywords:: garnet  fractionation  pseudosection  yttrium  THERMOCALC
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号