首页 | 本学科首页   官方微博 | 高级检索  
     


A microstructural and argon laserprobe study of shear zone development at the western margin of the Nanga Parbat–Haramosh Massif,western Himalaya
Authors:Reddy  Steven M.  Kelley  Simon P.  Magennis  Lochlann
Affiliation:(1) Dept. of Earth Sciences, Liverpool University, Liverpool L69 3BX, UK., GB;(2) Dept. of Earth Sciences, Open University, Milton Keynes, MK6 7AA, UK., GB;(3) Esso Petroleum UK Ltd., Esso House, MP25, Ermyn Way, Leatherhead, UK., GB
Abstract:A sample of banded amphibolite from the western margin of the Nanga Parbat–Haramosh Massif as Sassi has been studied using microstructural and 40Ar/39Ar laserprobe techniques to investigate the relationship between deformation and argon isotope variations in a natural system. Amphibolite-grade deformation occurred during south-directed overthrusting of the Kohistan arc over India along the Main Mantle Thrust and was overprinted by extensional reactivation of the earlier fabric and the formation of biotite-rich shear zones. Subsequent deformation along discrete fine-grained fault zones was characterised by the formation of scapolite, chlorite and K-feldspar, early plastic deformation and later cataclasis. Different minerals developed during this history show a wide range in apparent 40Ar/39Ar ages. Biotite, chlorite and scapolite exhibit much lower concentrations of excess argon, indicating their equilibration in a fluid relatively poor in excess argon. A `true' age of ca. 8 Ma from biotite represents a minimum age for deformation associated with formation of the Nanga Parbat Syntaxis and also precludes Pliocene metamorphism in this area of the syntaxis. Both high- and low-closure temperature minerals (amphiboles and feldspars) record apparent ages which are associated with the incorporation of excess argon within the mineral lattice. Although differential thermal resetting of minerals at different closure temperatures is important, variations in the inherited 40Ar/36Ar ratio throughout the sample is dominated by deformation and fluid infiltration. Consequently it appears that within deforming metamorphic rocks, areas with significantly different argon isotope compositions may be present and need not be homogenised by diffusion. Received: 6 July 1994 / Accepted: 24 December 1996
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号