首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gold metallogeny associated with craton destruction: A geophysical perspective from the North China Craton
Institution:1. Institute of Geophysics, China Earthquake Administration, 100081, Beijing, China;2. Centre for Tectonics, Resources and Exploration, Department of Earth Sciences, School of Physical Sciences, University of Adelaide, SA 5005, Australia;3. School of Earth Sciences and Resources, China University of Geosciences, 100083 Beijing, China;1. Department of Geology, Payame Noor University, PO Box 19395-3697, Tehran, Iran;2. Department of Geology, Faculty of Science, Shahid Bahonar University, Kerman, Iran;1. Department of Earth Sciences, Stellenbosch University, South Africa;2. Rockwater Consulting Namibia, PO Box 27344, Windhoek, Namibia;3. International Base Metals Limited, 47 Neridah Street, Chatswood NSW 2057, Australia;4. Craton Mining and Explorations, PO Box 81136, Olympia, Windhoek, Namibia;1. State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China;2. Gold Geological Institute of CAPF, Langfang 065000, China;3. James Cook University, Townsville 4811, Queensland, Australia;1. Department of Geochemistry and Ore-Forming Processes, A.N. Zavaritsky Institute of Geology and Geochemistry, the Uralian Branch of Russian Academy of Sciences, Pochtovy per. 7, Ekaterinburg 620075, Russia;2. Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G4 0NG, United Kingdom;3. ARC Centre of Excellence for Core to Crust Fluid Systems/GEMOC Key Centre, Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia;4. Department of General and Analytical Chemistry, University of Leoben, Leoben 8700, Austria
Abstract:Currently ranking as the largest producer of gold in the world, China's gold reserves are spread over 200 major gold deposits and several minor deposits. A large part of these belong to the late Mesozoic gold deposits in the North China Craton (NCC) that occur along craton margins, as well as within the cratonic interior in reactivated paleo sutures, and show a close spatio-temporal relationship with zones of lithospheric thinning and craton destruction. Here we integrate and evaluate geophysical information from the NCC through an analysis of receiver function and tomography that suggest mantle upwelling accompanied by lower crustal or lithospheric delamination. Our results identify that the major gold belts in the NCC are largely located above zones of mantle upwelling and craton destruction. The faults and paleo sutures provided the pathways for migration of ore-bearing fluids, with the granitoids offering favorable conditions for gold deposition.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号