首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Illite occurrences related to volcanic-hosted hydrothermal mineralization in the Biga Peninsula,NW Turkey: Implications for the age and origin of fluids
Institution:1. Pamukkale University, Department of Geological Engineering, 20070 Denizli,Turkey;2. Hacettepe University, Department of Geological Engineering, 06800 Ankara, Turkey;3. Queensland Geothermal Energy Centre of Excellence, The University of Queensland, Queensland 4072, Australia;4. School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom;1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;2. Open Laboratory of Orogenic and Crustal Evolution, Peking University, Beijing 100871, China;3. Henan Provincial Non-ferrous Metals Geological and Mineral Resources Bureau, Zhengzhou 450016, China;1. Geoscience Australia, Canberra, ACT 2601, Australia;2. Research School of Earth Sciences, Australian National University, Canberra 2601, Australia;3. Geological Survey of Queensland, Brisbane, Australia
Abstract:A different approach to investigate the origin of fluids, temperature conditions, age of hydrothermal activity of mineralization in the Biga Peninsula, (Koru, Tesbihdere and Kumarlar) employed mineralogical (illite Kübler Index, b cell dimension, polytype) and geochemical (major, trace/REE, O–H stable isotope and Rb/Sr dating) methods. The Kübler Index (KI) values of illites indicate different temperature conditions, such as low temperature (high-grade diagenesis) for Koru deposit, and high temperature (anchizone) for the Tesbihdere and Kumarlar deposits. The textural, mineralogical and geochemical data from illites show that these have potential for estimating the age of hydrothermal activity and fluid characteristics. Both mineralogical (high grade diagenetic to anchizonal KI, 1M polytype, low d060 values) and geochemical (similar major and trace element composition to host-rocks, low octahedral Mg + Fe contents, oxygen and hydrogen isotope composition) data are compatible with commonly known hydrothermal illites. Stable isotope data of illites are well matched to similar data from fluid inclusions, which indicate mainly magmatic fluids. The Rb/Sr age (22.4 ± 2.3 Ma: latest Oligocene and lowest Miocene) of the illites coincides with plutonic intrusions that are the main instigators of hydrothermal activities related to the extensional tectonic regime in the Biga Peninsula. The mineralogical and geochemical data of illites have some important advantages with respect to the use of fluid inclusions in determining δD of hydrothermal fluids thereby leading to better understanding ore-forming hydrothermal conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号