首页 | 本学科首页   官方微博 | 高级检索  
     


Accelerating the discontinuous Galerkin method for seismic wave propagation simulations using multiple GPUs with CUDA and MPI
Authors:Dawei Mu  Po Chen  Liqiang Wang
Affiliation:1. Department of Geology and Geophysics, University of Wyoming, Laramie, WY, USA
2. Computer Science Department, University of Wyoming, Laramie, WY, USA
Abstract:We have successfully ported an arbitrary high-order discontinuous Galerkin method for solving the three-dimensional isotropic elastic wave equation on unstructured tetrahedral meshes to multiple Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) of NVIDIA and Message Passing Interface (MPI) and obtained a speedup factor of about 28.3 for the single-precision version of our codes and a speedup factor of about 14.9 for the double-precision version. The GPU used in the comparisons is NVIDIA Tesla C2070 Fermi, and the CPU used is Intel Xeon W5660. To effectively overlap inter-process communication with computation, we separate the elements on each subdomain into inner and outer elements and complete the computation on outer elements and fill the MPI buffer first. While the MPI messages travel across the network, the GPU performs computation on inner elements, and all other calculations that do not use information of outer elements from neighboring subdomains. A significant portion of the speedup also comes from a customized matrix–matrix multiplication kernel, which is used extensively throughout our program. Preliminary performance analysis on our parallel GPU codes shows favorable strong and weak scalabilities.
Keywords:Seismic wave propagation   Discontinuous Galerkin method   GPU  
本文献已被 SpringerLink 等数据库收录!
点击此处可从《地震科学(英文版)》浏览原始摘要信息
点击此处可从《地震科学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号