首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Submerged macrophytes avoiding a negative feedback in reaction to hydrodynamic stress
Authors:Jonas Schoelynck  Dieter Meire  Kris Bal  Kerst Buis  Peter Troch  Tjeerd Bouma  Patrick Meire  Stijn Temmerman
Institution:1. University of Antwerp, Department of Biology, Ecosystem Management Research Group, Universiteitsplein 1C, B-2610 Wilrijk, Belgium;2. Ghent University, Department of Civil Engineering, Hydraulics Laboratory, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium;3. Netherlands Institute of Ecology, Centre for Estuarine and Marine Ecology, P.O. Box 140, 4400 AC Yerseke, The Netherlands;4. University of Limpopo, Department of Biodiversity, PBag 1106, 0727 Sovenga, South Africa
Abstract:In most aquatic ecosystems, hydrodynamic conditions are a key abiotic factor determining species distribution and aquatic plant abundance. Recently, local differences in hydrodynamic conditions have been shown to be an explanatory mechanism for the patchy pattern of Callitriche platycarpa Kütz. vegetation in lowland rivers. These local conditions consists of specific areas of increased shear zones, resulting in additional plant stress and erosion of the sediment on the one hand and local decreased shear zones resulting in zones favourable to plant growth and sedimentation of bed material on the other hand. In this study, the process of this spatial plant-flow-sedimentation interaction has been illustrated quantitatively by in situ flume measurements. By disturbing the incoming discharge on a single patch in such flume, we have quantified the behaviour and influence of a C. platycarpa patch under normal field conditions (base flow). Additionally, the behaviour of a C. platycarpa patch under different conditions of hydrodynamic stress has been examined in a laboratory flume. Indeed, flexible, submerged macrophytes are capable to adapt patch dimensions with changing stream velocities. At times of modest hydrodynamic stress, the species takes a position near the water surface and optimises its leaf stand, thereby maximising its photosynthetic capacity. At times of peak discharge, the patch will bend down towards the river bed and become more confined and streamlined, as such averting the stream velocity and diminishing the risk of breaking or being uprooted.In this paper, the processes of local hydrodynamic conditions on the patch and the patch’ intriguing life strategy of avoiding negative feedback was shown.
Keywords:Flume study  Erosion  Sedimentation  Bed shear stress  Scale-dependent feedbacks  Stream
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号