Abstract: | Porphyroclasts of relatively strong minerals in mylonites commonly have an internal monoclinic shape symmetry defined by tails of dynamically recrystallized material. The geometry of a porphyroclast and its tails, called a ‘porhyroclast system’, can serve as a valuable indicator of the sense of vorticity. Porphyroclast systems have been divided into σ- and δ-types on the basis of the geometry of the tails. σ-Types have wedge-shaped recrystallized tails whose median lines lie on opposite sides of a reference plane parallel to the tails and containing the symmetry axis for the system. σ-Types are further subdivided into a σa-types, in which the porphyroclast is isolated in a relatively homogeneous matrix, and σb-types, in which the porphyroclast system is associated with a shear band foliation in the matrix. δ-Types typically have narrow recrystallized tails whose median lines cross the reference plane adjacent to the porphyroclast. Consequently, embayments of matrix material occur adjacent to the porphyroclasts and the tails display characteristic bends.A porphyroclast system in a mylonite develops when the relatively weak dynamically recrystallized grain aggregate in the porphyroclast mantle changes its shape due to non-coaxial flow in the adjacent matrix. This behaviour has been modelled in shear box experiments. Passive marker lines around rigid cylinders embedded in silicone putty were subjected to simple shear. The experiments were modified to simulate a change in recrystallization rate (R) with respect to rate of deformation (γ) by decreasing the diameter of the rigid cylinder during deformation at variable rates. The ratio R/γ appears to be one of the most important factors in determining which porphyroclast system will develop. At high R/γ values, flow of recrystallized material away from the porphyroclast is continuously appended by the production of new grains and wedge-shaped σa-type tails develop. At low R/γ values, relatively few new grains are added to the tails which become thinned and deflected by drag due to the spinning motion of the porphyroclast. In addition, most porphyroclast systems at low shear strains are of σa-type or lack monoclinic symmetry, whereas δ-types are only developed at high shear strain values. Complex porphyroclast systems, characterized by two generations of tails, are observed in many of the natural and model shear zones studied and may form due to fluctuating R/γ. Conditions that allow isolated σa- and δ-type porphyroclast systems to be used as sense of vorticity indicators are: the systems should have a monoclinic shape symmetry; matrix grain size should be small with respect to porphyroclast size; matrix fabric should be homogeneous; deformation history should be simple, and observations should be made on sections normal to the inferred bulk vorticity vector for the mylonite. |