首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compositional changes of minerals associated with dynamic recrystallizatin
Authors:Richard A Yund  Jan Tullis
Institution:(1) Department Geological Sciences, Brown University, 02912 Providence, RI, USA
Abstract:The rate of compositional and isotopic exchange between minerals may be enhanced significantly if the rock is deformed simultaneously. The enhanced exchange rate may result from a reduction in grain size (shorter distance for volume diffusion), dissolution and growth of grains by diffusion creep (pressure solution), or the movement of high-angle grain boundaries through strained grains during recrystallization in the dislocation creep regime. The migration of high-angle grain boundaries provides high diffusivity paths for the rapid exchange of components during recrystallization. The operation of the latter process has been demonstrated by deforming aggregates consisting of two plagioclases (An1 and An79) at 900°C, 1 GPa confining pressure, and a strain rate of ∼2x10-6s-1. The polygonal, recrystallized grains were analyzed using an analytical transmission electron microscope and have a variable but often intermediate composition. At the conditions of these experiments, the volume interdiffusion rate of NaSi/CaAl is too slow to produce any observable chemical change, and microstructural-chemical relations indicate that the contribution from diffusion creep was insignificant except for initially fine-grained (2–10 μm) aggregates. These results indicate that strain-induced recrystallization can be an effective mechanism for enhancing the kinetics of metamorphic reactions and for resetting the isotope systematics of minerals such as feldspars, pyroxenes, and amphiboles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号