首页 | 本学科首页   官方微博 | 高级检索  
     检索      

C波段双偏振雷达降水估计的误差分析与建模
引用本文:唐佳琪,寇蕾蕾,蒋银丰,楚志刚,陈爱军.C波段双偏振雷达降水估计的误差分析与建模[J].气象学报,2022,80(2):224-242.
作者姓名:唐佳琪  寇蕾蕾  蒋银丰  楚志刚  陈爱军
作者单位:1.南京信息工程大学大气物理学院,南京,210044
基金项目:国家自然科学基金面上基金项目(41975027);;国家重点研究发展计划重点专项(2017YFC1501401);
摘    要:双线偏振雷达定量降水估计精度受多种因素影响,为了更好地应用双偏振雷达估计降水并进一步提高降雨估测精度,需对雷达降水估计进行误差分析和建模.基于2015—2016年南京信息工程大学C波段双偏振雷达、雨滴谱仪观测资料以及南京地区雨量计数据,统计分析雷达估测降水的误差分布,分离雨量计代表性误差,并对随机误差和系统误差量化建模...

关 键 词:双偏振雷达  性能分析  误差方差分离  误差建模  优化组合
收稿时间:2021-10-18
修稿时间:2021-12-27

Error analysis and modeling of C-band dual polarization radar quantitative precipitation estimation
Institution:1.School of Atmospheric Physics,Nanjing University of Information Science and Technology,Nanjing 210044,China2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,China
Abstract:The quantitative precipitation estimation accuracy of dual-polarization radar is affected by many factors. In order to better use dual-polarization radar to estimate precipitation and further improve the rainfall estimate accuracy, error analysis and modeling of radar precipitation estimation are needed. Based on observations of the C-band dual-polarization radar of Nanjing University of Information Science and Technology from 2015 to 2016, raindrop spectrometer observation data and rain gauge data in Nanjing, the error distribution of radar estimation precipitation is statistically analyzed, the gauge representativeness error variance is separated, and the error quantitative model based on random error and systematic error is established. Firstly, the data of dual polarization radar is preprocessed, and the radar rainfall formula is fitted by the data of raindrop spectrograph in the observation base of Nanjing University of Information Science and Technology. By comparing the four radar rainfall formula R (ZH), R (ZH, ZDR), R (KDP), R (KDP, ZDR) with the rain gauge, the estimation performance of each formula under different precipitation thresholds is analyzed. Then, the spatial correlation function of rain gauge data is estimated, the gauge representative error caused by spatial mismatch between radar and rain gauge is calculated, and the proportion of measurement error and parameter error in radar precipitation estimation error is analyzed. Based on the attribute and distribution rule of radar precipitation estimation errors, they are divided into random errors and systematic errors, and a quantitative model is established. Finally, based on the performance and error analysis of four radar rainfall formula, an optimized combination of dual polarization radar precipitation estimation algorithm is proposed. The results show that R (ZH) and R (ZH, ZDR) have better performance for light precipitation estimation. When the rainfall threshold is greater than 2.5 mm/h, the advantage of KDP becomes obvious. The gauge representative error caused by spatial mismatch cannot be ignored. Therefore, the point to area error should be eliminated when the radar resolution unit is large. The radar error is modeled according to the systematic error and random error, and it is found that the systematic error of radar near surface precipitation is proportional to the rainfall intensity in the form of linear function, and the double exponential model better represents the random error distribution. Through the performance analysis of radar rain measurement formula and dual polarization signal analysis, it is found that the optimized combination is better than the single rain algorithm in accuracy and stability. 
Keywords:
点击此处可从《气象学报》浏览原始摘要信息
点击此处可从《气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号